SECTION 4

CORE SAMPLE ANALYSIS

This section meets the third objective in the monitoring plan for the Denny Way sediment cap, i.e., to document how well the sand cap prevents contaminated sediments from migrating upward. Sediment cores were collected and analyzed to determine whether contaminated sediments remain isolated beneath the cap.

The monitoring plan defined three coring stations, N, O and P, as shown in Map 4-1. The coring stations were located away from other surface sampling locations so that any potential release of contaminated sediment from the core sampling activities would not affect surface samples. The three core stations were under 30 to 50 feet of water.

The first three cores were collected in May 1990, within two months of the completion of the cap. These samples established baseline conditions regarding the distribution of chemicals within the cap. Subsequent core samples were collected in May 1991 and 1992, 1 and 2 years after capping.

The cores were divided into subsamples, which were analyzed for trace metals, pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other semivolatile organics. Analyses for particle size distribution and percent solids were also performed. Total organic carbon (TOC) analysis was performed to allow comparisons with the Washington State Sediment Management Standards (SMS), which were under development in 1990 when capping occurred.

Two sets of tables and figures appear at the end of this section. The first set of tables (Tables 4-1 through 4-6) show how core characteristics differ from year to year, section to section, and core to core. The second set (4-7 through 4-14) compares results to the SMS.

The figures are vertical profile plots of representative chemicals (Figures 4-3 to 4-15) and illustrate the uniformity found throughout the cap, relative levels of contamination below, within, and on top of the cap, and changes from year to year. Six PAHs, one PCB, and six metals were chosen to be displayed because they were the most predominant; they represented different categories of chemicals; and they best show general characteristics.

Methods

Map 4-1. Core Sampling Stations

The compounds and metals chosen for the figures were phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo(a)pyrene, Aroclor 1254, cadmium, copper, lead, mercury, silver, and zinc. The scale was individually adjusted for each chemical; the largest concentration found in all 3 years was used to set the scale of the x-axis. The concentration or detection limit was given next to the representative bar. If the chemical was not detected the detection limit was given preceded by a < (less than) symbol.

METHODS

Cores were collected in a joint sampling effort by Metro researchers aboard the *RV Liberty* and contracted scuba divers using a diver support skiff. Location was determined by a shore-based survey crew using a laser theodolite range-azimuth positioning system. The surveyors occupied a known horizontal control

point (on top of the outfall structure) and directed the vessel to target sampling locations by monitoring the azimuth by theodolite and range with an electron distance measuring laser reflected off a prism onboard the *Liberty*. The *Liberty* crew set buoys at desired sampling locations and then anchored alongside each buoy with bow and stern anchors. The dive boat tied alongside the *Liberty* for positioning. The scuba diver operated with a surface air supply and was in constant contact with the skiff via closed circuit radio.

Two cores were collected from each of the three stations. In 1990, the scuba diver used a pneumatic rotohammer to drive a 6-foot-long, 4-inch-diameter, thin-walled-aluminum coring tube through the cap and at least 6 inches into the underlying contaminated sediments. For 1991 and 1992 sampling, the diver switched to a pneumatic jackhammer to drive the aluminum coring tube because he was not able to make the rotohammer penetrate the sand after trying for 20 minutes. The core was considered deep enough when about 1 foot of the 6-foot core tube remained above the bottom. Before pulling the core out of the sediments, a rubber screw plug was inserted into the top and a 3/4-inch-diameter rope was tied around the core tube by the diver. The boat crew used a capstan to slowly pull the core out of the sediments. Once the core was free of the bottom, the diver inserted another plug into the bottom of the tube and then it was hoisted onboard the *Liberty*.

Aboard the *Liberty*, the research crew removed the top plug and inserted a tape measure down the core to measure the amount of sediment in the tube. The cores were labeled with a permanent marker to show station number and amount of sediment present. The longest core from each station was chosen as the primary core to be analyzed. The second core was saved as a backup in case there was a problem with the first core, such as insufficient material from under the cap. A siphon hose was used to drain away excess water above the sediments. The top plug was replaced and the cores were stored vertically out of the sun for the rest of the day.

At the end of the day, the cores were transported to the Metro Environmental Laboratory, where they were logged and stored in a walk-in freezer. Later, the aluminum tubes were cut lengthwise with a circular saw equipped with a carbide-tip saw blade. One-half of the aluminum tube was removed. The other half was left to contain the core. After thawing underneath a heat lamp, five 6-inch-long vertical sections were taken from each core, as shown in Figure 4-1. One of the five sections was the 6 inches of contaminated sediments under the cap. The other four sections were from the lower 2 feet of

Methods

Figure 4-1. Cross Section of Core Samples

the cap. A 1-inch thick band of sediment at the interface between cap sands and underlying muds was discarded to avoid any contaminated sediment mixed into the first cap sample by disturbance during cap placement. Measurements were also made in centimeters for reporting to other agencies.

During core splitting, the outside of each core section was scraped away and only the undisturbed interior sediment scooped out and placed into a clean 4-liter beaker. The material in the beakers was stirred thoroughly and divided into subsamples for pesticides, PCBs, semivolatile organics, and metals analyses. The 1989 Duwamish River pre-dredge samples and the 1990 core and surface samples were analyzed for volatile organics; however, the results are compromised because the sediments had been frozen before analysis.

Metro's Environmental Laboratory used the Environmental Protection Agency and Puget Sound Environmental Program approved procedures for sediment analysis. Quality control (QC) procedures are discussed in Appendix E. Overall, 57 priority pollutants, 14 additional hazardous substances, 19 pesticides, 7 PCBs, and 16 metals were analyzed and reported.

Semivolatile organics, PCBs, pesticides, and volatile organics were reported as parts per billion dry weight ($\mu g/kg$) and metals were reported as parts per million dry weight (mg/kg). Certain semivolatile organics and PCBs were normalized with respect to total organic carbon for comparison to Washington Administrative Code Chapter 173-204 Sediment Management Standards (SMS), Table I, Marine Sediment Quality Standards-Chemical Criteria (SQS), and Table III, Marine Sediment Cleanup Screening Levels (CSL). These values were reported as parts per million carbon or mg/kg organic carbon. Except where noted, the more conservative SQS criteria were used as the basis for discussion, while the results were compared to both criteria in the tables.

1990 RESULTS

For the first year, the monitoring plan required the identification of chemicals in the cap, comparison of within-cap data to pre-dredge data and below-cap conditions, and interpretation regarding the uniformity of the cap. Six semivolatile compounds, one PCB, and six metals were chosen as representative chemicals for vertical profile plots. The following discussion considers all 116 parameters that were analyzed and emphasizes the 13 representative parameters.

The 1990 sediment cores were taken 6 to 8 weeks after cap placement. All five sections of each core were analyzed for trace metals, pesticides, PCBs, and semivolatile organics. The sections were combined into one sample for analysis of volatile organics.

In the following discussion, each core section is labeled with a letter indicating the core (N, O or P) from which it was taken, followed by a number (1 through 4) indicating its position above the cap/bottom interface. For example, the second 6-inch section above the interface in core N is called "N2." The section below the cap will not be noted in a similar fashion but will be referred to as "underlying sediments," "below cap," "contaminated sediments," or similar terms.

Summary

The concentrations of metals and organics were low and nearly uniform throughout the cap, based on chemical measurements in a total of 12 samples from three coring stations. Of 21 organic compounds found below the cap, only six were found anywhere within the cap, except for a section in one core that contained contaminated clay presumably dredged from the Duwamish River. Only trace levels of organic compounds were measured in the cap. Concentrations of metals were also much lower in the cap than in the underlying sediments. All within-cap values were well below the SMS. Some standards were exceeded below the cap, however, at stations N and O. The detection limits for below-cap and within-cap samples exceeded the SMS for some organic compounds, primarily when the dry-weight results were normalized for total organic carbon. Detection limits for metals did not exceed the standards.

Phenanthrene, fluoranthene, and pyrene were the most frequently detected compounds within the cap, found in three-quarters of the sections in trace amounts. Benzo(a)anthracene, chrysene, and benzoic acid were the next most prevalent, found in one-third of the sections. One compound (4-methylphenol), was found within the cap but not in the underlying sediments.

The dry-weight values show a sharp contrast between the within-cap concentrations and those below the cap. All dry-weight PAH concentrations within the cap were lower than the below-cap concentrations by at least one order of magnitude. However, this relationship was not as readily apparent in the TOC-normalized data. Low TOC values in the sand complicated the calculation of TOC-based values and detection limits. Among the PAHs that were detected, the TOC-normalized concentrations within cores N and O were about one order of magnitude lower than in the below-cap sections at those stations. The TOC-normalized concentrations within core P were often higher than below the cap at P. Two factors led to these odd results for TOC-normalized values. First, the dry-weight concentrations below the cap at Station P were the lowest of the three stations. Second, the TOC value for the below-cap sample at P was high; consequently the TOC-normalized values of organic compounds were greatly reduced.

Compared to the below-cap concentrations, concentrations within the cap of 10 reported metals were significantly lower. The other six were either moderately lower or about the same. Of the metals for which there are sediment standards, all within-cap concentrations were much lower than both the SMS and the below-cap concentrations.

Concentrations in the lowest 6-inch section of each core, where migration of contaminants from below the cap would most likely be noticed first, were indistinguishable from those in other cap sections. The removal of a 1-inch section between cap sands and contaminated clays proved sufficient to exclude mixed sediments.

Spatial differences in concentrations of organic compounds and metals were not present within the cap, in marked contrast to the pattern found below the cap. The station nearest the outfall had the most contaminated below-cap sediments, whereas the two stations farther away from the outfall were noticeably less contaminated. With the exception of a 4-inch band of contaminated clay in P3, the cap appears to be homogeneous, clean, Duwamish River sands. Sediment size analysis supports this determination.

Within-Cap Sections

Volatile organics samples for the three cores were run as composites; one gram from each of the five sections of the core was combined into one sample. The entire 5-gram sample was purged and processed by GC/MS techniques. Therefore, the concentrations detected and detection limits were still based on one gram from each of the original samples. Composites were run instead of individual samples because only two volatile organics, acetone and 2-butanone (MEK), were detected in the 1989 pre-dredge analysis of the capping material.

Similarly, the only volatiles detected in the 1990 composites were acetone and MEK. Acetone was detected in all three composites and MEK was detected in one. Acetone and MEK are commonly detected in sampler blanks and are found in most of the volatile organic samples that Metro's Environmental Lab processes. The acetone and MEK contamination might be a result of freezing the sediments prior to splitting or may be from glassware and apparatus at the laboratory.

Only one cap section, the third 6-inch section of core P (P3), displayed concentrations for several chemical compounds approaching those of the underlying contaminated sediments. During core splitting it was noted that this section contained a 4-inch-thick section of clay or soil. The physical characteristics of this clay were much different from the clays underlying the cap; it appeared to be a patch of peat-type material containing evergreen needles dredged up from the Duwamish River with the clean sand. The peat-type material did not have the hydrogen sulfide smell of the under-cap muds. According to barge-track records, the majority of sediments spread over the area surrounding site P were from the last two barge loads. It is possible that as the

clean sands were dredged from the Duwamish River, some clays, beneath or near the dredged sands, were mixed in. This anomaly must be recognized so that subsequent results can be interpreted with regard to chemical migration within the cap. This was the only cap section of all three cores where acenaphthene, fluorene, anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, benzo(g,h,i)perylene and bis(2-ethylhexyl)-phthalate were detected. Concentrations for 10 of the 16 metals were higher here than anywhere else in the cap. The total organic carbon content of this section was very high compared to sand samples, confirming that mud was present. When normalized for organic carbon content, the organics concentrations were quite comparable to the other P sections and none exceeded sediment standards (see Tables 4-7 to 4-9). The detection limits exceeded only two TOC-normalized sediment criteria, relatively few compared to other cap sections.

Except for the section described above, the cap was very clean compared to the underlying sediments. Only six compounds were detected in any of the other sections, and always in trace amounts. Of special note, no compounds were detected at Station O. Benzoic acid was detected in three of the N core sections and the contaminated P section at concentrations approaching below-cap levels. but the concentrations were still lower than the sediment standards. Another substance, 4-methylphenol, was detected in two cap sections (N3 and P3) but not below the cap. The source was probably the Duwamish River sands, since small amounts were detected in the pre-dredge analysis. The concentrations were well below the SMS. The LPAH phenanthrene and the HPAHs fluoranthene and pyrene were sometimes detected at concentrations below, at, or slightly above detection limits. The HPAHs benzo(a)anthracene and chrysene were the only other compounds quantified in any of the cap sections, always below, at, or slightly above detection limits. No PCBs or pesticides were detected in any of the cap sections. No organic compounds were detected in the sections N2, N4, O2, O3, O4, and N4.

Metals in the cap were similarly low relative to the underlying sediments. The highest concentrations for 13 of the 16 reported metals for all cap sections (except P3) were less than the lowest concentrations found in the underlying contaminated sediments. Lead, mercury, and silver demonstrated the sharpest differences in concentrations; the average concentrations of these metals in the below cap sediments were 22 to 35 times higher than the average concentrations within the cap. In contrast, average iron and manganese concentrations were virtually the same in the cap and below the cap. Arsenic, cadmium, chromium, copper, nickel, and zinc levels were significantly lower within the cap sediments

while aluminum, beryllium, and selenium were only moderately lower. Antimony and thallium were not detected in any of the cap sections.

Although below-cap samples at Station O were the most contaminated, the O sections of the cap showed no detected organic compounds and the lowest concentrations of metals. Overall, the distribution of contaminants appeared consistently low throughout the cap (excluding P3) and without significant spatial variation.

All detected concentrations were well below the SMS. For non-detected compounds, however, the comparison of detection limits to the SMS was complicated by the low total organic carbon content of the sands. This low organic content meant that the TOC-normalized detection limits for up to 18 compounds exceeded the sediment standards. Detection limits for two compounds, 1,2,4 trichlorobenzene and hexachlorobenzene, almost always exceeded sediment standards. Five sections had detection limits higher than the standards for benzyl butyl phthalate, dibenzofuran, n-nitrosodiphenylamine, PCBs, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2-methylnaphthalene, and acenaphthene. Another section's detection limits exceeded standards for all of the above except acenaphthene.

Sediments with low (e.g., 0.1 to 0.2 percent) total organic carbon content often have difficulty meeting the SMS when TOC-normalized. In these instances, it is recommended that the parameters be compared to the dry-weight Apparent Effects Thresholds (AETs). Being mostly sand, one-half of the within-cap samples had organic carbon contents within this range. Of these samples, the detection limits for 1,2,4-trichlorobenzene, hexachlorobenzene, diethyl phthalate, hexachlorobutadiene, N-nitrosodiphenylamine, p,p-DDE and p,p-DDT exceeded the minimum AETs in some cases.

The SMS use dry weight for ionizable organic chemicals that are not controlled by the organic matter in sediments. In these cases, the total organic carbon content is not important and the detection limits are determined by the sample preparation and instrumentation. Among these compounds, the detection limit for 2-4 dimethylphenol almost always exceeded the criteria. The detection limit for 2-methylphenol exceeded the criteria occasionally.

Comparison to Pre-Dredge Data

The types and concentrations of semivolatile organics found in the cap were very similar to the pre-dredge analysis, as expected. Concentration ranges for the pre-dredge analysis were slightly lower than the cap results; this difference might be explained by analytical variations, or it could be the result of material settling onto the to-be-dredged material during the year between analysis and dredging. Phenanthrene, fluoranthene, and pyrene, detected in both the pre-dredge and cap analyses, were the most prevalent in terms of concentration and frequency. Benzo(a)anthracene and chrysene were the next most prevalent in both. Benzoic acid and 4-methylphenol were perceptibly higher in the cap sediments but should not be of concern as both were still well below the SMS. Seven compounds detected in the pre-dredge analysis were not found in any of the cap cores except for the one contaminated with clay.

Arsenic, copper, iron, nickel, and zinc demonstrated higher average concentrations in the pre-dredge analysis than in the cap, while antimony and cadmium had lower average concentrations, and concentrations were in the same general range for lead, mercury, and silver. Of the metals analyzed, all pre-dredge and within-cap concentrations were substantially lower than the concentrations found below the cap.

Particle Size Distribution

Sediment size analysis showed that the cap was composed mostly of sand, in contrast to a mixture of silt, sand, and clay below the cap. Nine of the twelve within-cap sections were composed of more than 95 percent sand and less than 5 percent mud (silt + clay). Two of the remaining three cap sections, N3 and N4, were composed of 90 percent sand and 10 percent mud and 81 percent sand and 19 percent mud, respectively. The section in which mud from the Duwamish River was documented (P3) contained 61 percent sand and 38 percent mud. The three sections with appreciable amounts of mud were also higher in organic carbon content.

The sediments beneath the cap were predominantly silts (50-58 percent) followed by sands (27-41 percent) and clay (7-20 percent). Station O had the most sands of the under-cap samples, presumably because it was closest to the outfall and therefore in the highest-energy environment. Stations N and P had essentially identical sand to mud ratios, but the greater proportion of silts at P and relatively coarser silts at N suggest that N is a slightly higher-energy environment.

Below the Cap

Eighteen semivolatile organic compounds and one PCB were detected in the contaminated sediments below the cap, but not all compounds were present at each station. Most of the pollutants detected below the cap were detected at concentrations much higher than the detection limits. No pesticides were detected below the cap.

The distribution of organic pollutants below the cap appeared to be related to distance from the outfall, and to a lesser degree, direction away from the outfall. The station closest to the outfall, Station O, had the highest concentrations for all compounds except Aroclor 1254. Concentrations at Station O were usually two to five times higher than concentrations at the next most contaminated site, Station N. Station N exhibited the highest concentrations of Aroclor 1254 and the second highest concentrations for most other compounds. Generally, Station P appeared to be the least contaminated. Stations N and P are roughly the same distance from the outfall, but Station N is in the northern half of the cap and Station P is to the south. There appear to be more chemical occurrences and higher concentrations toward the north; this pattern was also observed in samples collected in 1986 before capping (Romberg et al. 1987).

The distribution of metals below the cap was variable, but two dominant patterns emerged. For seven metals (antimony, cadmium, copper, lead, mercury, silver, and zinc) the distribution pattern was the same as that described for organics: high concentrations at Station O and significantly lower concentrations at Stations N and P, with less at P than N.

The other pattern, for nine metals, was almost the opposite: lowest at Station O, highest at either Station N or P. Because of many variations this pattern was less distinct. Aluminum, iron, nickel, beryllium, and selenium were all lowest at Station O. Interestingly, both arsenic and chromium were highest at Station P and lowest at Station N. Thallium was below the detection limits in all three cores' below-cap sections.

Aluminum, iron, and manganese are not pollutants but are metals abundant in the earth's crustal soils and indicate the presence of mud. Higher concentrations of these metals were found at offshore stations, where there is more mud, and lower concentrations were found at the sandier inshore stations.

Values for total PCBs exceeded the SQS at Stations N and O. Mercury, silver, and bis (2-ethylhexyl) phthalate exceeded the CSL at Stations N and O. Benzoic

acid exceeded the CSL at Station O. Station O also exceeded the SQS for fluoranthene, chrysene, both benzo fluoranthenes, total HPAHs, benzyl butyl phthalate, benzoic acid, and lead. No criteria were exceeded at P. The organic content of all three below-cap samples was high enough for the chemical criteria to be reliable tests of the potential toxicity of the sediments.

Previous studies found similar relationships. The Denny Way toxicant reduction study (Metro 1987) found the highest concentrations approximately where Station O is located, with steep concentration down-gradients seaward and to the north and south (see Figure 4-2). While the contaminant profile was essentially the same, the concentrations found in the toxicant reduction study were usually higher than those found in the below-cap core section. This suggests that contaminant degradation or natural recovery may have occurred, or that the most contaminated muds were not recovered in the cores, a sampling artifact discussed in more detail later in this report.

1991 RESULTS

The monitoring plan required that during subsequent years of monitoring apparent chemical increases in the cap be identified and compared to underlying sediments. Also, comparisons were to be made to Puget Sound Sediment Standards if the levels became significantly elevated. The following discussion details all changes found within and below the cap and compares the findings to the newly adopted SMS.

In 1991, semivolatile organics, pesticides, PCBs, and metals analyses were performed on only the below-cap and first 6-inch sections for all cores. The second, third, and fourth 6-inch sections were kept frozen in storage until it was decided that they would not need to be analyzed. Based on early examination of the data, those sections were not analyzed because there was no indication of chemicals migrating up into the first 6-inch core sections. Volatile organics were not analyzed because none had been detected in previous years except the two considered sampling artifacts.

The procedure for analyzing arsenic, antimony, selenium, and thallium changed from graphite furnace in 1990 to ICP in 1991. As a result, the detection limits for these metals became higher. Antimony, selenium, and thallium were not detected within the cap and are not sediment criteria metals, so this change was not significant. Arsenic is of concern as a sediment standards metal, but the ICP detection limits remained below the criteria.

Summary

Data from the three cores indicates that very little if any migration from the underlying contaminated sediments into the cap sands occurred. A phthalate, some PAHs and three PCBs had higher values in one section, N1. The total PCBs in N1 were above the SMS. Mercury, silver, and chromium were higher in this same section. At the other two stations, some PAHs and two metals were slightly higher. Although detection limits in 1991 were substantially lower than in 1990 for most organic compounds, the low total organic carbon content of the sands continued to make comparison to the SMS difficult.

The vertical profile plots of representative compounds and metals demonstrated three points: first, concentrations in the below-cap section were much lower in 1991; second, concentrations within the cap are low and similar to those observed in 1990; and third, the surface is being recontaminated. Further discussion of surface conditions is presented in Section 5.

The concentrations of most organic compounds below the cap were much lower in 1991 than 1990. Among compounds, only di-n-butyl phthalate, bis(2-ethylhexyl)phthalate, and three Aroclors were higher in concentration. The higher results were observed at Station P. The highest concentrations of PAHs were still found at Station O, but the highest concentrations of most metals and all PCBs switched to Station P. The concentration of total PCBs in the P core was by far the highest observed in this study.

The large drop in PAH concentrations in the below-cap samples in all three cores was probably due to a sampling artifact. Cores had to be jackhammered in 1991 instead of rotohammered, because the core tube was not able to penetrate through the sand cap. Less-contaminated underlying sediments may have been collected because of this change in sampling method.

Within-Cap Sections

Changes, mostly minor, occurred in the within-cap sections N1 and P1. The changes were probably the result of lower detection limits, sampling and analytical variability, and possible laboratory contamination, but migration must also be considered.

High concentrations of bis(2-ethylhexyl)phthalate and lower concentrations of eight other compounds that had not been detected in N1 before were detected in the 1991 samples. However, much of the apparent bis(2-ethylhexyl)phthalate contamination may be the result of contamination at the laboratory, since this

compound is found in some of the plastic lab apparatus, reagents, and containers. Bis(2-ethylhexyl)phthalate's TOC-normalized concentration of 33 ppm was below the SMS (see Table 4-10). The emergence of acenaphthene, fluorene, and anthracene was likely due to lower detection limits. The appearance of benzo(a)anthracene and chrysene along with the increases of fluoranthene and pyrene may indicate some migration of contaminants; these are probably the result of analytical or sampling variation, however, and are therefore nonsignificant. The appearance of three PCBs was likely due to much lower detection limits, but it could also be attributed to the "patchy" distribution the Aroclors have demonstrated in prior studies. A patchy distribution is defined as the failure "to show any consistent distribution pattern" (Romberg et al. 1987). The total concentration of PCBs was above the SQS but below the CSL.

In P1, phenanthrene, fluoranthene, pyrene, and chrysene values were higher than the previous year. The differences were minor, however, less than 22 ppb dry-weight, and were most likely due to normal sampling and analytical variability.

Mercury values were higher in Section N1, approaching the SQS. Silver and chromium increased but remained lower than the below-cap values and sediment standards. All other metals values in N1 were within or lower than the ranges defined by the within-cap 1990 values. When compared to Sections O1 and P1 in 1991, N1 had the highest values for beryllium, chromium, copper, mercury, and silver, but most of the differences were minor.

The only other noteworthy changes were demonstrated by arsenic and beryllium in O and P. Arsenic values more than doubled to be within the range of concentrations found below the cap, yet stayed well below the sediment criteria.

Otherwise, Sections O1 and P1 were virtually unaltered from the year before. Despite even lower detection limits, no chemical compounds were detected in O1, so it remained the core section with the lowest concentrations. The concentrations of all other metals changed little. Pesticides and PCBs remained undetected in both. The only within-cap value that exceeded the sediment standard was that for total PCBs in N1.

The dry-weight detection limits were lower in 1991 than 1990 for all chemical compounds, including PCBs and pesticides. The only dry-weight detection limits to exceed the sediment standards were for 2,4-dimethylphenol.

The dry-weight detection limits were very consistent from core to core, while the TOC-normalized detection limits varied considerably.

The 1991 TOC-normalized detection limits were slightly higher than 1990 limits for the semivolatile organics in N. TOC-normalized detection limits were lower in 1991 than 1990 for the PCBs in N and for all compounds in O and P. The TOC-normalized detection limits continued to be problematic because of low organic carbon content. Detection limits exceeded the criteria for 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, hexachlorobenzene, and hexachlorobutadiene in all three sections. Section P1 detection limits also exceeded the criteria for dibenzo(a,h)anthracene, 1,4-dichlorobenzene, benzyl butyl phthalate, dibenzofuran, and n-nitrosodiphenylamine. Section O1 detection limits exceeded all of the above criteria and 2-methylnaphthalene.

Below the Cap

The below-cap concentrations of two phthalates and three Aroclors were higher in 1991 at Station P. Di-n-butyl phthalate, detected for the first time anywhere, was found within the range considered contamination from laboratory procedures and was far below the SMS. Bis(2-ethylhexyl)phthalate was lower at Stations N and O but was higher at P. The concentrations at Stations O and P (150mg/kg carbon for both) exceeded the SMS. Interestingly, the concentrations of benzyl butyl phthalate and dibenzofuran were lower while benzoic acid went undetected altogether, despite better detection limits. Eventhough they were lower, benzyl butyl phthalate still exceeded the SMS at Station O.

Two compounds were analyzed in 1991 that were not analyzed in 1990, coprostanol and Carbazole. A small amount of Carbazole was detected in one under-cap sample, while coprostanol was not detected.

Compared to the previous year, below-cap levels of Aroclor 1254 were lower at Stations N and O but higher at Station P. Aroclor 1260 was found in all three below-cap samples for the first time, as well as Aroclor 1248 in the below-cap samples from Stations O and P. The concentrations of all three PCBs were about five times higher at Station P than at N or O. The total amount of PCBs exceeded the SMS at all three stations.

Antimony and selenium detection limits were higher than the concentrations observed in 1990 because of a change in method. Thallium was

not detected in 1990, but, despite the higher detection limits in 1991, it was detected at Station P. The analysis of arsenic was not affected by the change.

Of the detected metals, all except aluminum, arsenic, and nickel were higher at Station P. Station P had the highest concentrations of the 1991 below-cap samples for all detected metals except arsenic and beryllium. Below-cap concentrations of mercury exceeded the sediment standards at all three stations, while silver exceeded the standard at Station P. Overall, the average concentrations in below-cap samples tended to be lower in 1991 than 1990 but most of the differences were minor.

Why PAH Concentrations Were Lower in the Below-Cap Samples

There were many possible causes for the lower concentrations of PAHs in the 1991 below-cap samples: positioning errors, dilution by cap material, patchy distribution, chemical degradation, bioremediation, or sampling procedure.

Historically, PCBs have demonstrated a seemingly random distribution of concentrations. PAHs, on the other hand, have shown a fairly recognizable pattern of decreasing with distance from the outfall. The distribution of PAHs in 1991 continued to follow this pattern despite sharp overall decreases in concentrations. Therefore, it is unlikely that the changes in PAH concentrations were the result of patchy chemical distribution.

Chemical degradation of the PAHs was suspected but unlikely because the metal concentrations also decreased, indicating lower concentrations of both chemical groups. Microbial activity can degrade organic compounds but would not affect metals.

The most likely explanation is that the 1991 core sampling procedure may not have collected the most contaminated portion of the below-cap sediments. The method of driving the core tube was changed from rotohammer to jackhammer because the rotohammer was having difficulty. It is possible that the cap sands plugged the core tube as it was being driven into the cap sands. The plugged core tube then forced aside the upper, most contaminated layer of mud before capturing a firmer, less-contaminated mud substrate below. This sampling artifact may have been caused by more compacted cap sands or it could be the result of the rougher motion of the jackhammer.

1992 RESULTS

All sections of the N and O cores were analyzed for semivolatile organics, PCBs, pesticides, and metals in 1992. Analysis of the 1992 P core was limited to the below-cap and first 6-inch sections. Replicate cores for N and O were taken and the below-cap and first 6-inch sections were analyzed for the same parameters. In addition, the second 6-inch section of the replicate O core was analyzed. Volatile organics were not analyzed because they had not been observed in previous years' samples.

Since this was the second time that the second, third and fourth 6-inch sections of the cores were analyzed, additional comparisons could be made based on the range of "background" conditions established by the 1990 cores.

Summary

The 1992 data show no indication that organic compounds and metals are migrating from the underlying sediments into the cap after 2 years. The sharp interface between the cap sands and the underlying sediments was again evident in all core samples. Fluoranthene and pyrene were the only chemical compounds detected in the cap with regularity, usually at trace, background levels. Antimony and thallium were detected for the first time, in every within-cap section analyzed.

In 1992, Section O4 had moderately higher PAH concentrations than in 1990. The higher values are attributed to mud found in the sample. The mud may be from surface sediment, because the core contained less than 2 feet of sand and the fine material was found on top of the sand. The cap material appears to be only about 2 feet thick in this area.

No other within-cap section of any of the three cores had significantly higher values. The O1 replicate showed higher values, but this was because this sample contained the peat-type material that was dredged along with the capping sand from the Duwamish River. The replicate samples for N1, and O2 did not differ noticeably from the primary samples.

The higher values observed in N1 in 1991 were reversed in 1992. Bis(2-ethylhexyl)phthalate, PCBs, mercury, silver, and chromium concentrations were back to 1990 levels, if they were detected at all. This suggests that some of the below-cap muds may have been present in the 1991 N1 sample.

Below the cap, concentrations of PAHs in the primary and replicate samples from Stations N and O were similar to 1991 concentrations at these stations. PAH concentrations at Station P were comparable to the 1990 Station P concentrations, which were higher than 1991. As a result, the typical spatial distribution found in prior years of higher concentrations closest to the outfall was not observed in 1992. Station P concentrations were often the highest, followed closely by Station O.

The organic-carbon content was higher in 1992 for many within-cap sections, causing the TOC-normalized values and detection limits to be lower in general. All compounds or metals within the cap were well below the SMS. Below the cap, mercury, silver, bis(2-ethylhexyl)phthalate, and total PCBs exceeded the standards on occasion. Some detection limits continued to be higher than the criteria, but, in general, both dry-weight and TOC-normalized detection limits were lower than in previous years.

Within-Cap Sections

Fewer compounds were detected in N1 and the N1 replicate in 1992 than in 1991, with comparable detection limits. Of special note, the bis(2ethylhexyl)phthalate concentration was much lower, which confirms that the 1991 concentration was probably laboratory contamination or that a small amount of below-cap mud was present in the 1991 sample. Only one PCB was detected, further supporting the assertion that the presence of Aroclors was "patchy" or random. The 1992 dry-weight detection limits for PCBs and pesticides were about twice as high as the 1991 limits, but the 1992 PCB detection limits were still lower than the actual 1991 concentrations. The high concentration of mercury found in 1991 does not appear to be a problem because 1992 concentrations were lower than the overall 1990 average. Concentrations in the N1 section and its replicate were very similar. Arsenic, antimony, and thallium were the only metals found at concentrations higher than concentrations in other within-cap samples. The concentrations of all other metals in N1 and its replicate were either about the same or below other withincap concentrations.

Small quantities of PAHs, two phthalates, and benzoic acid were found in N2 and N3. No pesticides or PCBs were detected in either of these sections. There were a few more compounds detected in N2, which might be attributed to lower detection limits. The higher concentrations and number of compounds detected in N3 in 1992 was probably the result of a large amount of natural, decomposed organic debris that was observed in the N3 section during the core cutting. The

1992 dry weight detection limits for all semivolatile organics, pesticides, and PCBs in Sections N2, N3, and N4 were lower than the 1990 detection limits. Of the compounds detected in 1990, none of the concentrations was significantly higher, and several were lower. The compound 4-methylphenol, which had been detected in N3 in 1990, was not detected in 1992, although the detection limit was lower.

No semivolatile organics, pesticides, or PCBs were detected in N4. The absence of detected compounds suggests that there has not been any migration or disturbance by burrowing from the surface at this station.

Arsenic, antimony, beryllium, and thallium were the only metals in the N core sections with higher concentrations than the range defined in 1990. The arsenic concentrations were higher than 1990 values in all N core within-cap sections yet stayed below the under-cap concentrations and far below sediment management criteria. The antimony and beryllium changes were minor.

Antimony concentrations ranged from 1.2 ppb to 2.8 ppb, less than three times higher than the 1990 detection limit. Thallium concentrations ranged from 9.3 ppm to 16 ppm, roughly a factor of 10 higher than the 1990 detection limit. In every section, the arsenic concentrations were higher than the background levels established in 1990, but still lower than the below-cap levels and much lower than the SMS. Antimony, arsenic, and thallium were analyzed by graphite furnace techniques in 1990 and ICP in 1992. The procedural change may be responsible for these apparent changes.

The regular and replicate samples from Sections O2 and O3 and the regular sample from O1 continued to be void of detectable levels of semivolatile organics, pesticides, and PCBs. The semivolatile organics' dry-weight detection limits were virtually identical to the 1991 limits and somewhat lower than the 1990 limits. As in the N core samples, antimony, arsenic, and thallium were found at levels higher than the 1990 ranges. All other metals were below or within the ranges. Selenium remained undetected.

Several PAHs were higher in Section O4. One PCB was detected at a value lower than the detection limit. Again, antimony, arsenic, and thallium were higher than the expected range. Silver was also higher than the range observed in 1990, but still lower than the below-cap levels and the SMS.

The increased values in O4 were from contaminants on the surface, which is being recontaminated (discussed in more detail in Section 5). The O core and O

core replicate contained only 22 inches of sand, so the cap may be less than 2 feet thick at this station. The O4 section that was analyzed contained 3 inches of material: one-half inch of peat at the bottom of the section, one-and-one-half inches of sand in the center, and one inch of fine material on the top. The fine material, found on the top of the core section, was most likely distributed onto the cap between 1990 and 1992 and probably contains the most contaminants. The surface grab sample (Station K) associated with core Station O has experienced the most recontamination since capping of the four surface stations. The vertical profile plots show that concentrations of representative metals and chemical compounds in O4 were slightly higher than the other O sections but lower than the 1992 surface-grab concentrations at Station K. This supports the observations that the O4 sample was a mixture of surface fines and cap sands, and that the cap sands were relatively clean.

Only the first 6-inch section of the P core within-cap sections was analyzed. Two PAHs were found at typical levels. Antimony, arsenic, and thallium were the only metals at concentrations greater than the background range. Overall, the cap continued to isolate contaminants at this site.

Below Cap

Dry-weight concentrations of PAHs in the below-cap samples from the two cores at N and the two cores at O were similar to the 1991 concentrations at these stations and lower than the 1990 concentrations. At Station P in 1992, dry-weight concentrations of PAHs were higher than the 1991 concentrations and similar to the 1990 concentrations. Changes in phthalates, other semivolatiles, and PCBs were random. Most metals concentrations were similar to 1990 and 1991. Selenium was detected for the first time in all the below-cap samples.

Because under-cap concentrations at P were higher in 1992, values for mercury, silver, bis(2-ethylhexyl)phthalate, and total PCB concentrations exceeded the SMS at Station P (see Tables 4-11 to 4-14). The regular and replicate N samples exceeded the criteria for mercury, bis(2-ethylhexyl)phthalate, and total PCBs. The Station O and O replicate below-cap samples did not exceed any criteria.

The SQS for 2,4-dimethylphenol (dry weight) was exceeded by the detection limits for all below-cap samples. The TOC-normalized SQS for hexachlorobenzene was exceeded by detection limits at the N and N replicate below-cap samples.

Dry-weight concentrations of PAHs in core N and the core N replicate were slightly lower than, similar, or slightly higher than concentrations found in the 1991 N core. All were lower than 1990 N core concentrations. The frequencies, types and concentrations of other semivolatile organics detected in 1992 in N were within the very broad ranges found the 1990 and 1991 data. Total PCB dry-weight concentrations were higher than the 1991 total because of the appearance of Aroclor 1248, but still lower than the 1990 total, which was solely dependent on the Aroclor 1254 concentration. When TOC-normalized, the concentrations of PAHs, phthalates, other semivolatiles, and PCBs were higher in the replicate than the regular sample, which is the result of a lower organic carbon content in the replicate. The aluminum and nickel concentrations in the N replicate were the highest yet observed in this study.

The regular O core and the replicate were similar to each other and the 1991 concentrations for most chemical compounds and metals. The only tangible differences (less than 50 percent variability) were for fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c-d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, Carbazole, Aroclor 1254, and lead. Given the nature of sediments and the coring method, these differences were not unreasonable. All of the analyses still showed substantial contamination below the cap and a sharp contrast to the cap. After TOC-normalization, concentrations in the regular and the replicate were very similar to each other, yet much different from 1991 concentrations because the total organic carbon content in 1992 was much higher. No compounds or metals exceeded the sediment standards in either 1992 Station O sample. The detection limits for 2,4-dimethylphenol did exceed the standards.

Only one core was taken at Station P. Unlike the cores taken at N and O, the P-core below-cap PAH concentrations were more like the 1990 concentrations than the 1991 concentrations. This meant that many 1992 P-core concentrations were higher than the N- and O-core concentrations, changing the appearance of the relative distribution. Furthermore, naphthalene, acenaphthylene and Carbazole were detected for the first time in a P-core sample. Di-n-butyl phthalate was not detected this year, but the bis(2-ethylhexyl)phthalate was much higher than before. By dry weight and TOC-normalization, the Aroclor concentrations were much lower than 1991 but were still among the highest observed in this study. Metals concentrations were within ranges defined by all stations in 1990 and 1991 and similar to previous findings at P.

Cap material exhibited mostly uniform, low concentrations of semivolatile organics and metals. The only exceptions were the elevated concentrations

found in P3 in 1990 and the O1 replicate in 1992, which were determined to contain clay presumably dredged from the Duwamish River. A distinct interface between the bottom of the sand cap and the underlying contaminated muds was apparent from chemical and metal concentrations and from visual inspection of the cores. Removal of a one-inch-thick section between the muds and sands proved sufficient, indicating that contaminated muds were not mixed to any great extent with cap sands during capping. There is no evidence of chemicals or metals migrating from the contaminated sediments into the cap.

FIGURES AND TABLES

Figure 4-2. Pre-Cap Total HPAHs

Figure 4-3. Phenanthrene

Figure 4-3. Phenanthrene continued

The Denny Way Sediment Cap

Figure 4-4. Anthracene continued

Figure 4-5. Floranthene

Figure 4-6. Pyrene

Figure 4-6. Pyrene continued

Figure 4-7. Chrysene

Figure 4-7. Chrysene continued

Figure 4-8. Benzo (a) pyrene

Figure 4-8. Benzo (a) pyrene continued

Figure 4-9. Aroclor 1254

Figure 4-9. Aroclor 1254 continued

Figure 4-10. Cadmium

Figure 4-10. Cadmium continued

Figure 4-11. Copper

Figure 4-11. Copper continued

Figure 4-12. Lead

Figure 4-12. Lead continued

Figure 4-13. Mercury

Mercury

Figure 4-13. Mercury continued

Figure 4-14. Silver

Figure 4-14. Silver continued

Figure 4-15. Zinc

Zinc

Sample Locator	1990 L	TBD2	4	19	91 LT	BD24		19	92 LT	BD24	1	1992 R	n LTI	BD24
Date Sampled	May 1	4, 90		- I	May 30,	. 91			lay 19,				19, 9	
Sample Number	9000				91012				92011				01202	
% Solids:	69)			44			-	71	-			49	
% TOC	2.4	4			4.8				2.5				4.4	
BNA Organics (µg/kg dry)	Value Qual	MDL	RDL	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL	Value Q	ual MI	OL RD
LPAHs		_						·						
Naphthalene	<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>70</td><td>110</td><td></td><td><mdl< td=""><td>40</td><td>70</td><td><m< td=""><td>DL 6</td><td>0 10</td></m<></td></mdl<></td></mdl<></td></mdl<>	60	110		<mdl< td=""><td>70</td><td>110</td><td></td><td><mdl< td=""><td>40</td><td>70</td><td><m< td=""><td>DL 6</td><td>0 10</td></m<></td></mdl<></td></mdl<>	70	110		<mdl< td=""><td>40</td><td>70</td><td><m< td=""><td>DL 6</td><td>0 10</td></m<></td></mdl<>	40	70	<m< td=""><td>DL 6</td><td>0 10</td></m<>	DL 6	0 10
Acenaphthylene	55	20	36		<mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>10</td><td>24</td><td>20 <r< td=""><td></td><td>20 3.</td></r<></td></mdl<></td></mdl<>	20	39		<mdl< td=""><td>10</td><td>24</td><td>20 <r< td=""><td></td><td>20 3.</td></r<></td></mdl<>	10	24	20 <r< td=""><td></td><td>20 3.</td></r<>		20 3.
Acenaphthene	110	10	29	_	<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>18</td><td>33</td><td></td><td>0 2</td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>18</td><td>33</td><td></td><td>0 2</td></mdl<>	10	18	33		0 2
Fluorene	110	20	36		<mdl< td=""><td>20</td><td>39</td><td>20</td><td></td><td>10</td><td>_24</td><td>39</td><td></td><td>0 3</td></mdl<>	20	39	20		10	_24	39		0 3
Phenanthrene	740	20.				20	39	230		10	24	270	2	20 3.
Anthracene	300	20	36	61		20	39	59		10	24	78	2	0 3.
HPAHs														
Fluoranthene	1400	20	43			20	45	320		10	28	860	7	0 4
Pyrene	1200	20	36	360	-	20	39	370		10	_24	490	2	20 3:
Benzo(a)anthracene	590	20	36	180		20	39	170		10	24	200	2	20 3:
Chrysene	990	20	36	300		20	39	210		10	24	190	2	0 3:
Benzo(b)fluoranthene	1200	60	110	300	_	70	110	460		40	70	410	. 6	0 10
Benzo(k)fluoranthene	1000	60	110	270		70	110	130		40	70	290	- 6	0 10
Benzo(a)pyrene	840	40	72	250		50	75	240		30	46	350		0 6
Indeno(1,2,3-Cd)Pyrene	220	40	72	100		50	75	140		30	46	130		0 6
Dibenzo(a,h)anthracene	<mdl< td=""><td></td><td>110</td><td></td><td><mdl< td=""><td>70</td><td>110</td><td></td><td><rdl< td=""><td>40</td><td>70</td><td><m< td=""><td></td><td>0 10</td></m<></td></rdl<></td></mdl<></td></mdl<>		110		<mdl< td=""><td>70</td><td>110</td><td></td><td><rdl< td=""><td>40</td><td>70</td><td><m< td=""><td></td><td>0 10</td></m<></td></rdl<></td></mdl<>	70	110		<rdl< td=""><td>40</td><td>70</td><td><m< td=""><td></td><td>0 10</td></m<></td></rdl<>	40	70	<m< td=""><td></td><td>0 10</td></m<>		0 10
Benzo(g,h,i)perylene	160	40	72	80		50	75		<mdl< td=""><td>30</td><td>46</td><td>120</td><td>4</td><td>0 6</td></mdl<>	30	46	120	4	0 6
Other BNA		- 40												
Di-N-Butyl Phthalate	<mdl< td=""><td></td><td>72</td><td><</td><td>MDL,B</td><td>50</td><td>75</td><td></td><td>1DL,B</td><td>30</td><td>46</td><td><md< td=""><td></td><td>0 6</td></md<></td></mdl<>		72	<	MDL,B	50	75		1DL,B	30	46	<md< td=""><td></td><td>0 6</td></md<>		0 6
Benzyl Butyl Phthalate Bis(2-Ethylhexyl)Phthalate	280	20	36	500	<mdl< td=""><td>20</td><td>39</td><td>65</td><td>_</td><td>10</td><td>24</td><td><m< td=""><td></td><td>0 3</td></m<></td></mdl<>	20	39	65	_	10	24	<m< td=""><td></td><td>0 3</td></m<>		0 3
	3600	20	36	590		20	39	1300	1.151	10	24	3100		0 3
Dibenzofuran	<mdl< td=""><td></td><td>72</td><td></td><td><mdl< td=""><td>50</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>46</td><td><m< td=""><td></td><td>0 6</td></m<></td></mdl<></td></mdl<></td></mdl<>		72		<mdl< td=""><td>50</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>46</td><td><m< td=""><td></td><td>0 6</td></m<></td></mdl<></td></mdl<>	50	75		<mdl< td=""><td>30</td><td>46</td><td><m< td=""><td></td><td>0 6</td></m<></td></mdl<>	30	46	<m< td=""><td></td><td>0 6</td></m<>		0 6
Benzoic Acid	350	100	220		<mdl< td=""><td>100</td><td>230</td><td></td><td><mdl< td=""><td></td><td>140</td><td><m< td=""><td></td><td></td></m<></td></mdl<></td></mdl<>	100	230		<mdl< td=""><td></td><td>140</td><td><m< td=""><td></td><td></td></m<></td></mdl<>		140	<m< td=""><td></td><td></td></m<>		
4-Methylphenol	<mdl< td=""><td>40</td><td>72</td><td></td><td><mdl< td=""><td>50</td><td>75</td><td></td><td><mdl< td=""><td></td><td>46</td><td>· <m< td=""><td></td><td>0 6</td></m<></td></mdl<></td></mdl<></td></mdl<>	40	72		<mdl< td=""><td>50</td><td>75</td><td></td><td><mdl< td=""><td></td><td>46</td><td>· <m< td=""><td></td><td>0 6</td></m<></td></mdl<></td></mdl<>	50	75		<mdl< td=""><td></td><td>46</td><td>· <m< td=""><td></td><td>0 6</td></m<></td></mdl<>		46	· <m< td=""><td></td><td>0 6</td></m<>		0 6
Carbazole Coprostanol									<mdl< td=""><td>30</td><td>46</td><td>150</td><td></td><td>0 6</td></mdl<>	30	46	150		0 6
PCBs (µg/kg dry weight)									<mdl< td=""><td>70</td><td>140</td><td><m< td=""><td>DL 10</td><td>0 200</td></m<></td></mdl<>	70	140	<m< td=""><td>DL 10</td><td>0 200</td></m<>	DL 10	0 200
Aroclor 1248	<mdl< td=""><td>60</td><td>120</td><td></td><td>MIDI</td><td>100</td><td>100</td><td>240</td><td></td><td></td><td>4.0</td><td>500</td><td></td><td></td></mdl<>	60	120		MIDI	100	100	240			4.0	500		
Aroclor 1254	1400		120	200	<mdl< td=""><td>100</td><td>190</td><td>340</td><td></td><td>20</td><td>46</td><td>590</td><td></td><td>0 67</td></mdl<>	100	190	340		20	46	590		0 67
Aroclor 1260		60	120	390		100	190	240		20	46	200		0 67
Volatiles (μg/kg dry weight	<mdl< td=""><td>60</td><td>120</td><td>320</td><td></td><td>100</td><td>190</td><td>480</td><td></td><td>_20</td><td>46</td><td>410</td><td>3</td><td>0 67</td></mdl<>	60	120	320		100	190	480		_20	46	410	3	0 67
2-Butanone (MEK)	, <mdl< td=""><td>40</td><td>72</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></mdl<>	40	72		-								-	
Acetone	280	40	72									 -	_	
Metals (mg/kg dry weight)	200	40	/2											
Mercury	0.99			1.1				1				0.55		
Aluminum	13000 B			15000				14000	В			20000	В	
Antimony	2.9 E				иDL,G	7		2.8	E,G				,G	
Arsenic	8.7 G			20	VIDE, G			11	٢,0			14	,0	
Barium	78 B,E			61				80				94		
Beryllium	0.29			0.45				0.32				0.43		
Cadmium	1.4 L			0.45				1.1	L			1.3	L	
Chromium	45			48	Ε			41				55		
Copper	77			66	<u>_</u>			58	В			57	В	
Iron	19000			21000				18000	В			22000	В	
Lead	160			68				110					,B	
Nickel	43			48				41	-,0			59	٠,٠	
Selenium	1.3				<mdl< td=""><td>10</td><td></td><td></td><td><mdl< td=""><td>4</td><td></td><td> 39 <m< td=""><td><u> </u></td><td>2</td></m<></td></mdl<></td></mdl<>	10			<mdl< td=""><td>4</td><td></td><td> 39 <m< td=""><td><u> </u></td><td>2</td></m<></td></mdl<>	4		39 <m< td=""><td><u> </u></td><td>2</td></m<>	<u> </u>	2
Silver	6.5			2				5.4		•		4.7		
Thallium	<mdl,e,g< td=""><td>3</td><td></td><td></td><td><mdl< td=""><td>50</td><td></td><td>11</td><td></td><td></td><td></td><td>16</td><td></td><td></td></mdl<></td></mdl,e,g<>	3			<mdl< td=""><td>50</td><td></td><td>11</td><td></td><td></td><td></td><td>16</td><td></td><td></td></mdl<>	50		11				16		
Zinc	190 B			100	В			110	В			240	В	

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E.

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

B - Low standard reference material recovery

C - Low standard reference material recovery

TABLE 4-1 (cont	inued). C	ore	e N	: Organ	ic (Con	pounds a	ınd	Me	etals, Sec	tion N	1
Sample Locator	1990 LT	3D24		1991 LT	BD2	4	1992 LT	RD24	1 -	1992 Rep	I TRD24	
Date Sampled	May 14			May 30		•	May 19		<u>-</u>	May 1		
Sample Number	90004	33		91012			92011			9201	203	
% Solids:	81			81			86			8:		
% TOC	1.4			0.81	1	-	1			1		
BNA Organics (µg/kg dry)	Value Qual	MDL	RDL	Value Qual	MDL	RDL	Value Qual	MDL	RDL			DL
LPAHs												
Naphthalene	<mdl< td=""><td>50</td><td>92</td><td><mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>58</td><td><mdi< td=""><td>- 40</td><td>60</td></mdi<></td></mdl<></td></mdl<></td></mdl<>	50	92	<mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>58</td><td><mdi< td=""><td>- 40</td><td>60</td></mdi<></td></mdl<></td></mdl<>	40	62	<mdl< td=""><td>30</td><td>58</td><td><mdi< td=""><td>- 40</td><td>60</td></mdi<></td></mdl<>	30	58	<mdi< td=""><td>- 40</td><td>60</td></mdi<>	- 40	60
Acenaphthene	<mdl< td=""><td>10</td><td>_25</td><td><mdl< td=""><td>9</td><td>16</td><td><mdl< td=""><td>8</td><td>15</td><td><mdi< td=""><td></td><td>16</td></mdi<></td></mdl<></td></mdl<></td></mdl<>	10	_25	<mdl< td=""><td>9</td><td>16</td><td><mdl< td=""><td>8</td><td>15</td><td><mdi< td=""><td></td><td>16</td></mdi<></td></mdl<></td></mdl<>	9	16	<mdl< td=""><td>8</td><td>15</td><td><mdi< td=""><td></td><td>16</td></mdi<></td></mdl<>	8	15	<mdi< td=""><td></td><td>16</td></mdi<>		16
Acenaphthylene	<mdl< td=""><td>20</td><td>31</td><td><mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td></td><td>20</td></mdi<></td></mdl<></td></mdl<></td></mdl<>	20	31	<mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td></td><td>20</td></mdi<></td></mdl<></td></mdl<>	10	21	<mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td></td><td>20</td></mdi<></td></mdl<>	10	20	<mdi< td=""><td></td><td>20</td></mdi<>		20
Phenanthrene	43	20	31	31	10	21	<mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td></td><td>20</td></mdi<></td></mdl<>	10	20	<mdi< td=""><td></td><td>20</td></mdi<>		20
Fluorene	<mdl< td=""><td>20</td><td>31</td><td><mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>. 10</td><td>20</td></mdi<></td></mdl<></td></mdl<></td></mdl<>	20	31	<mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>. 10</td><td>20</td></mdi<></td></mdl<></td></mdl<>	10	21	<mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>. 10</td><td>20</td></mdi<></td></mdl<>	10	20	<mdi< td=""><td>. 10</td><td>20</td></mdi<>	. 10	20
Anthracene	<mdl< td=""><td>20</td><td>31</td><td><mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>_ 10</td><td>20</td></mdi<></td></mdl<></td></mdl<></td></mdl<>	20	31	<mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>_ 10</td><td>20</td></mdi<></td></mdl<></td></mdl<>	10	21	<mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>_ 10</td><td>20</td></mdi<></td></mdl<>	10	20	<mdi< td=""><td>_ 10</td><td>20</td></mdi<>	_ 10	20
HPAHs									_			
Fluoranthene	<mdl< td=""><td>_20</td><td>37</td><td>46</td><td>10</td><td>25</td><td><mdl< td=""><td>10</td><td>23</td><td></td><td></td><td>24</td></mdl<></td></mdl<>	_20	37	46	10	25	<mdl< td=""><td>10</td><td>23</td><td></td><td></td><td>24</td></mdl<>	10	23			24
Pyrene	<mdl< td=""><td>_20</td><td>31</td><td>51</td><td>10</td><td>21</td><td>21</td><td>10</td><td>20</td><td></td><td>10</td><td>20</td></mdl<>	_20	31	51	10	21	21	10	20		10	20
Benzo(a)anthracene	<mdl< td=""><td>20</td><td>31</td><td>20</td><td>_10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>. 10 .</td><td>20</td></mdi<></td></mdl<></td></mdl<>	20	31	20	_10	21	<mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>. 10 .</td><td>20</td></mdi<></td></mdl<>	10	20	<mdi< td=""><td>. 10 .</td><td>20</td></mdi<>	. 10 .	20
Chrysene	<mdl< td=""><td>20</td><td>_31</td><td>20</td><td>_10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>. 10 .</td><td>20</td></mdi<></td></mdl<></td></mdl<>	20	_31	20	_10	21	<mdl< td=""><td>10</td><td>20</td><td><mdi< td=""><td>. 10 .</td><td>20</td></mdi<></td></mdl<>	10	20	<mdi< td=""><td>. 10 .</td><td>20</td></mdi<>	. 10 .	20
Benzo(b)fluoranthene	<mdl< td=""><td>50</td><td>92</td><td><mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>58</td><td><mdl< td=""><td>. 40</td><td>60</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	92	<mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>58</td><td><mdl< td=""><td>. 40</td><td>60</td></mdl<></td></mdl<></td></mdl<>	40	62	<mdl< td=""><td>30</td><td>58</td><td><mdl< td=""><td>. 40</td><td>60</td></mdl<></td></mdl<>	30	58	<mdl< td=""><td>. 40</td><td>60</td></mdl<>	. 40	60
Benzo(k)fluoranthene	<mdl< td=""><td>50</td><td>92</td><td>_<mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>58</td><td><mdi< td=""><td>40</td><td>60</td></mdi<></td></mdl<></td></mdl<></td></mdl<>	50	92	_ <mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>58</td><td><mdi< td=""><td>40</td><td>60</td></mdi<></td></mdl<></td></mdl<>	40	62	<mdl< td=""><td>30</td><td>58</td><td><mdi< td=""><td>40</td><td>60</td></mdi<></td></mdl<>	30	58	<mdi< td=""><td>40</td><td>60</td></mdi<>	40	60
Benzo(a)pyrene	<mdl< td=""><td>30</td><td>62</td><td><mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30	62	<mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<></td></mdl<>	20	41	<mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<>	20	38	<mdl< td=""><td></td><td>40</td></mdl<>		40
Indeno(1,2,3-Cd)Pyrene	<mdl< td=""><td>30</td><td>62</td><td><mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td>. 20 -</td><td>40</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30	62	<mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td>. 20 -</td><td>40</td></mdl<></td></mdl<></td></mdl<>	20	41	<mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td>. 20 -</td><td>40</td></mdl<></td></mdl<>	20	38	<mdl< td=""><td>. 20 -</td><td>40</td></mdl<>	. 20 -	40
Dibenzo(a,h)anthracene	<mdl< td=""><td>50</td><td>92</td><td><mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>_ 58</td><td><mdl< td=""><td>. 40</td><td>60</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	92	<mdl< td=""><td>40</td><td>62</td><td><mdl< td=""><td>30</td><td>_ 58</td><td><mdl< td=""><td>. 40</td><td>60</td></mdl<></td></mdl<></td></mdl<>	40	62	<mdl< td=""><td>30</td><td>_ 58</td><td><mdl< td=""><td>. 40</td><td>60</td></mdl<></td></mdl<>	30	_ 58	<mdl< td=""><td>. 40</td><td>60</td></mdl<>	. 40	60
Benzo(g,h,i)perylene	<mdl< td=""><td>30</td><td>62</td><td><mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdi< td=""><td>. 20</td><td>40</td></mdi<></td></mdl<></td></mdl<></td></mdl<>	30	62	<mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdi< td=""><td>. 20</td><td>40</td></mdi<></td></mdl<></td></mdl<>	20	41	<mdl< td=""><td>20</td><td>38</td><td><mdi< td=""><td>. 20</td><td>40</td></mdi<></td></mdl<>	20	38	<mdi< td=""><td>. 20</td><td>40</td></mdi<>	. 20	40
Other BNA												
Di-N-Butyl Phthalate	<mdl< td=""><td>30_</td><td>62</td><td><mdl,b< td=""><td>20</td><td>41</td><td><mdl,b< td=""><td>20</td><td>38</td><td><mdl,b< td=""><td>20 4</td><td>40</td></mdl,b<></td></mdl,b<></td></mdl,b<></td></mdl<>	30_	62	<mdl,b< td=""><td>20</td><td>41</td><td><mdl,b< td=""><td>20</td><td>38</td><td><mdl,b< td=""><td>20 4</td><td>40</td></mdl,b<></td></mdl,b<></td></mdl,b<>	20	41	<mdl,b< td=""><td>20</td><td>38</td><td><mdl,b< td=""><td>20 4</td><td>40</td></mdl,b<></td></mdl,b<>	20	38	<mdl,b< td=""><td>20 4</td><td>40</td></mdl,b<>	20 4	40
Benzyl Butyl Phthalate	<mdl< td=""><td>20</td><td>31</td><td><mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>. 10 :</td><td>20</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	20	31	<mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>. 10 :</td><td>20</td></mdl<></td></mdl<></td></mdl<>	10	21	<mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>. 10 :</td><td>20</td></mdl<></td></mdl<>	10	20	<mdl< td=""><td>. 10 :</td><td>20</td></mdl<>	. 10 :	20
Bis(2-Ethylhexyl)Phthalate		20	_31	270	10	21	33	10	20	<mdl< td=""><td>. 10</td><td>20</td></mdl<>	. 10	20
Dibenzofuran	<mdl< td=""><td>30</td><td>62</td><td><mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30	62	<mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<></td></mdl<>	20	41	<mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<>	20	38	<mdl< td=""><td></td><td>40</td></mdl<>		40
Benzoic Acid	310		180	<mdl< td=""><td>60</td><td>120</td><td><mdl< td=""><td>60</td><td>120</td><td><mdl< td=""><td>60 12</td><td>20</td></mdl<></td></mdl<></td></mdl<>	60	120	<mdl< td=""><td>60</td><td>120</td><td><mdl< td=""><td>60 12</td><td>20</td></mdl<></td></mdl<>	60	120	<mdl< td=""><td>60 12</td><td>20</td></mdl<>	60 12	20
4-Methylphenol	<mdl< td=""><td>30_</td><td>62</td><td><mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30_	62	<mdl< td=""><td>20</td><td>41</td><td><mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<></td></mdl<>	20	41	<mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td></td><td>40</td></mdl<></td></mdl<>	20	38	<mdl< td=""><td></td><td>40</td></mdl<>		40
Carbazole		_					<u><</u> MDL	20	38	<mdl< td=""><td></td><td>40</td></mdl<>		40
Coprostanol				_		i	<u><m< u="">DL</m<></u>	60	120	<mdl< td=""><td>60 12</td><td>20</td></mdl<>	60 12	20
PCBs (μg/kg dry weight)						,						
Aroclor 1254				54	_10	21	20 <rdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td>. 20 4</td><td>40</td></mdl<></td></rdl<>	20	38	<mdl< td=""><td>. 20 4</td><td>40</td></mdl<>	. 20 4	40
Aroclor 1248				64	10	21	<mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td>20 4</td><td>40</td></mdl<></td></mdl<>	20	38	<mdl< td=""><td>20 4</td><td>40</td></mdl<>	20 4	40
Aroclor 1260				40	10	21	<mdl< td=""><td>20</td><td>38</td><td><mdl< td=""><td>20 4</td><td>40</td></mdl<></td></mdl<>	20	38	<mdl< td=""><td>20 4</td><td>40</td></mdl<>	20 4	40
Volatiles (µg/kg dry weigh	t)											
2-Butanone (MEK)						i						
Acetone											~~	
Metals (mg/kg dry weight												
Mercury	0.049			0.3			0.035			<mdl< td=""><td>0.02</td><td></td></mdl<>	0.02	
Aluminum	8600 B			3800			9400 B			9300 B		
Antimony		0.9		<mdl,g< td=""><td>_ 4</td><td></td><td>1.2 E,G</td><td></td><td></td><td>1.2 E,G</td><td></td><td>\neg</td></mdl,g<>	_ 4		1.2 E,G			1.2 E,G		\neg
Arsenic	6.2 G	_		<mdl< td=""><td>6</td><td></td><td>7</td><td></td><td></td><td>7.2</td><td></td><td></td></mdl<>	6		7			7.2		
Barium	31 B,E			14			36			35		
Beryllium	0.25			0.3			0.23			0.24		
Cadmium	0.37 L			<mdl< td=""><td>0.5</td><td></td><td>0.23 L</td><td></td><td></td><td>0.12 L</td><td></td><td></td></mdl<>	0.5		0.23 L			0.12 L		
Chromium	15			6.2 E			14			12		
Copper	12	_		5.1 B			12 B			11 B		
Iron	18000			8300			15000 B			14000 B		
Lead	6.2			4.9			4.7 E,B			8.1 E,B		
Nickel	12			4.9			12			11		
Selenium	0.62			<mdl< td=""><td>6</td><td></td><td><mdl< td=""><td>3</td><td></td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<></td></mdl<>	6		<mdl< td=""><td>3</td><td></td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<>	3		<mdl< td=""><td>1</td><td></td></mdl<>	1	
Silver	0.49			1			0.35			0.36		
Thallium	<mdl,e,g< td=""><td>1_</td><td>-</td><td><mdl< td=""><td>20</td><td></td><td>9.3</td><td></td><td></td><td>11</td><td></td><td></td></mdl<></td></mdl,e,g<>	1_	-	<mdl< td=""><td>20</td><td></td><td>9.3</td><td></td><td></td><td>11</td><td></td><td></td></mdl<>	20		9.3			11		
Zinc In 1990 antimony, arsenic, se	49 B			22 B		10 1	45 B			46 B		

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E.

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

TABLE 4-2. Co	re N: Org	jan	ic C	Comp	oun	ds a	and	Metals,	Sec	tior	s N2 and	l N	3
Sample Locator	N2 1990 L	TBD	24	N2	1992 L	TBD	24	N3 1990 I	TBD	24	N3 1992	LTBD	24
Date Sampled	May 14,	90			lay 19			May 14	, 90		May 19	, 92	
Sample Number	90004				92011			90004			92012		
% Solids:	79				83			73			75		
% TOC	0.15				1.7			1.1			2.4		
BNA Organics (µg/kg dry)	Value Qual	MDL	RDL	Value	Qual	MDL	RDL	Value Qual	MDL	RDL	Value Qual	MDL	RDL
LPAHs					•			-				,	
Naphthalene	<mdl< td=""><td>50</td><td>95</td><td></td><td><mdl< td=""><td>40</td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	95		<mdl< td=""><td>40</td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	40	60	<mdl< td=""><td>50</td><td>100</td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<>	50	100	<mdl< td=""><td>40</td><td>67</td></mdl<>	40	67
Acenaphthene	<mdl< td=""><td>10</td><td>25</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td><mdl< td=""><td>20</td><td>34</td><td><mdl< td=""><td>9</td><td>17</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	10	25		<mdl< td=""><td>8</td><td>16</td><td><mdl< td=""><td>20</td><td>34</td><td><mdl< td=""><td>9</td><td>17</td></mdl<></td></mdl<></td></mdl<>	8	16	<mdl< td=""><td>20</td><td>34</td><td><mdl< td=""><td>9</td><td>17</td></mdl<></td></mdl<>	20	34	<mdl< td=""><td>9</td><td>17</td></mdl<>	9	17
Acenaphthylene	<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>10</td><td>27</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	20	32		<mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>10</td><td>27</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	10	20	<mdl< td=""><td>10</td><td>27</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	10	27	<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Phenanthrene	<mdl< td=""><td>20</td><td>32</td><td>22</td><td></td><td>10</td><td>20</td><td><mdl< td=""><td>20</td><td>34</td><td>41</td><td>10</td><td>23</td></mdl<></td></mdl<>	20	32	22		10	20	<mdl< td=""><td>20</td><td>34</td><td>41</td><td>10</td><td>23</td></mdl<>	20	34	41	10	23
Fluorene	<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>58</td><td>20</td><td>34</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	20	32		<mdl< td=""><td>10</td><td>20</td><td>58</td><td>20</td><td>34</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	10	20	58	20	34	<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Anthracene	<mdl< td=""><td>20</td><td>32</td><td>_</td><td><mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>20</td><td>34</td><td>10 < RDL</td><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	20	32	_	<mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>20</td><td>34</td><td>10 < RDL</td><td>10</td><td>23</td></mdl<></td></mdl<>	10	20	<mdl< td=""><td>20</td><td>34</td><td>10 < RDL</td><td>10</td><td>23</td></mdl<>	20	34	10 < RDL	10	23
HPAHs													
Fluoranthene	<mdl< td=""><td>20</td><td>38</td><td>37</td><td></td><td>10</td><td>24</td><td>74</td><td>20</td><td>41</td><td>100</td><td>10</td><td>27</td></mdl<>	20	38	37		10	24	74	20	41	100	10	27
Pyrene	<mdl< td=""><td>20</td><td>32</td><td>46</td><td></td><td>10</td><td>20</td><td>66</td><td>20</td><td>34</td><td>72</td><td>10</td><td>23</td></mdl<>	20	32	46		10	20	66	20	34	72	10	23
Benzo(a)anthracene	<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>20</td><td>34</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	20	32		<mdl< td=""><td>10</td><td>20</td><td><mdl< td=""><td>20</td><td>34</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	10	20	<mdl< td=""><td>20</td><td>34</td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	20	34	<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Chrysene	<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>42</td><td>20</td><td>34</td><td>33</td><td>10</td><td>23</td></mdl<></td></mdl<>	20	32		<mdl< td=""><td>10</td><td>20</td><td>42</td><td>20</td><td>34</td><td>33</td><td>10</td><td>23</td></mdl<>	10	20	42	20	34	33	10	23
Benzo(b)fluoranthene	<mdl< td=""><td>50</td><td>95</td><td></td><td><mdl< td=""><td>40</td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td>40 < RDL</td><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	50	95		<mdl< td=""><td>40</td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td>40 < RDL</td><td>40</td><td>67</td></mdl<></td></mdl<>	40	60	<mdl< td=""><td>50</td><td>100</td><td>40 < RDL</td><td>40</td><td>67</td></mdl<>	50	100	40 < RDL	40	67
Benzo(k)fluoranthene	<mdl< td=""><td>50</td><td>95</td><td></td><td><mdl< td=""><td></td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td>40 < RDL</td><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	50	95		<mdl< td=""><td></td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td>40 < RDL</td><td>40</td><td>67</td></mdl<></td></mdl<>		60	<mdl< td=""><td>50</td><td>100</td><td>40 < RDL</td><td>40</td><td>67</td></mdl<>	50	100	40 < RDL	40	67
Benzo(a)pyrene	<mdl< td=""><td>30</td><td>63</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td>30 < RDL</td><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	63		<mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td>30 < RDL</td><td>30</td><td>44</td></mdl<></td></mdl<>	20	40	<mdl< td=""><td>30</td><td>68</td><td>30 < RDL</td><td>30</td><td>44</td></mdl<>	30	68	30 < RDL	30	44
Indeno(1,2,3-Cd)Pyrene	<mdl< td=""><td>30</td><td>63</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30	63		<mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	20	40	<mdl< td=""><td>30</td><td>68</td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	30	68	<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Dibenzo(a,h)anthracene	<mdl< td=""><td>50</td><td>95</td><td></td><td><mdl< td=""><td>40</td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	95		<mdl< td=""><td>40</td><td>60</td><td><mdl< td=""><td>50</td><td>100</td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	40	60	<mdl< td=""><td>50</td><td>100</td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<>	50	100	<mdl< td=""><td>40</td><td>67</td></mdl<>	40	67
Benzo(g,h,i)perylene	<mdl< td=""><td>30</td><td>63</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td><mdl< td=""><td>_ 30</td><td>44</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30	63		<mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td><mdl< td=""><td>_ 30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	20	40	<mdl< td=""><td>30</td><td>68</td><td><mdl< td=""><td>_ 30</td><td>44</td></mdl<></td></mdl<>	30	68	<mdl< td=""><td>_ 30</td><td>44</td></mdl<>	_ 30	44
Other BNA													
Di-N-Butyl Phthalate	<mdl< td=""><td>30</td><td>63</td><td></td><td><rdl,b< td=""><td></td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td><mdl,b< td=""><td>30</td><td>44</td></mdl,b<></td></mdl<></td></rdl,b<></td></mdl<>	30	63		<rdl,b< td=""><td></td><td>40</td><td><mdl< td=""><td>30</td><td>68</td><td><mdl,b< td=""><td>30</td><td>44</td></mdl,b<></td></mdl<></td></rdl,b<>		40	<mdl< td=""><td>30</td><td>68</td><td><mdl,b< td=""><td>30</td><td>44</td></mdl,b<></td></mdl<>	30	68	<mdl,b< td=""><td>30</td><td>44</td></mdl,b<>	30	44
Benzyl Butyl Phthalate	<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td>20</td><td>34</td><td><mdl< td=""><td>10</td><td>_ 23</td></mdl<></td></mdl<></td></mdl<>	20	32		<mdl< td=""><td>10</td><td>20</td><td></td><td>20</td><td>34</td><td><mdl< td=""><td>10</td><td>_ 23</td></mdl<></td></mdl<>	10	20		20	34	<mdl< td=""><td>10</td><td>_ 23</td></mdl<>	10	_ 23
Bis(2-Ethylhexyl)Phthalate	<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td></td><td>20</td><td></td><td>20</td><td>34</td><td> 68</td><td>10</td><td>23</td></mdl<></td></mdl<>	20	32		<mdl< td=""><td></td><td>20</td><td></td><td>20</td><td>34</td><td> 68</td><td>10</td><td>23</td></mdl<>		20		20	34	68	10	23
Dibenzofuran	<mdl< td=""><td>30</td><td>63</td><td></td><td><mdl< td=""><td></td><td>40</td><td></td><td>30</td><td>68</td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	63		<mdl< td=""><td></td><td>40</td><td></td><td>30</td><td>68</td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>		40		30	68	<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Benzoic Acid	<mdl< td=""><td>90</td><td>190</td><td></td><td><mdl< td=""><td></td><td>120</td><td>270</td><td>100</td><td>210</td><td>130</td><td>70</td><td>130</td></mdl<></td></mdl<>	90	190		<mdl< td=""><td></td><td>120</td><td>270</td><td>100</td><td>210</td><td>130</td><td>70</td><td>130</td></mdl<>		120	270	100	210	130	70	130
4-Methylphenol	<mdl< td=""><td>30</td><td>63</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td>100</td><td>30</td><td>68</td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	63		<mdl< td=""><td>20</td><td>40</td><td>100</td><td>30</td><td>68</td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	20	40	100	30	68	<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Carbazole					<mdl< td=""><td>20</td><td>40</td><td></td><td></td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	20	40				<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Coprostanol					<mdl< td=""><td>_60</td><td>120</td><td></td><td></td><td></td><td><mdl< td=""><td>70</td><td>130</td></mdl<></td></mdl<>	_60	120				<mdl< td=""><td>70</td><td>130</td></mdl<>	70	130
PCBs (μg/kg dry weight)													
Aroclor 1254	<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	60	110		<mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></td></mdl<>	20	40	<mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<>	50	110	<mdl< td=""><td>20</td><td>44</td></mdl<>	20	44
Aroclor 1248	<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td></td><td>40</td><td><mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	60	110		<mdl< td=""><td></td><td>40</td><td><mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></td></mdl<>		40	<mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<>	50	110	<mdl< td=""><td>20</td><td>44</td></mdl<>	20	44
Aroclor 1260	<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	60	110		<mdl< td=""><td>20</td><td>40</td><td><mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></td></mdl<>	20	40	<mdl< td=""><td>50</td><td>110</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<>	50	110	<mdl< td=""><td>20</td><td>44</td></mdl<>	20	44
Volatiles (µg/kg dry weigh	t)												
2-Butanone (MEK)													
Acetone													
Metals (mg/kg dry weight				0.00				0.06			0.027		
Mercury	0.051			0.02				0.06			0.027		
Aluminum	8700 B	- 1		9300	В			9300 B	1		11000 B		
Antimony	<mdl,e< td=""><td>1</td><td></td><td>1.2</td><td>E,G</td><td></td><td></td><td><mdl,e< td=""><td>1</td><td></td><td>1.3 E,G</td><td></td><td></td></mdl,e<></td></mdl,e<>	1		1.2	E,G			<mdl,e< td=""><td>1</td><td></td><td>1.3 E,G</td><td></td><td></td></mdl,e<>	1		1.3 E,G		
Arsenic	5.1 G			8.4				5.5 G			9.3 44		
Barium	33 B,E			42				40 B,E					
Beryllium	0.25 <mdl,l< td=""><td>0</td><td></td><td>0.28</td><td></td><td></td><td></td><td>0.14</td><td></td><td></td><td>0.31</td><td></td><td></td></mdl,l<>	0		0.28				0.14			0.31		
Chamium				0.12				0.27 L			0.27 L		
Coppor	14 11			12 13	В	- -		13 12	•		15 15 B		
Copper				16000	В			18000					
Iron	18000				E,B			6.8					
Lead Nickel	6.3 12			4.8 11	E,D			12			6.7 E,B 13		
·	0.76				<mdl< td=""><td>2</td><td></td><td>0.96</td><td></td><td></td><td></td><td>3</td><td></td></mdl<>	2		0.96				3	
Selenium	0.76 <mdl< td=""><td>0</td><td></td><td>0.36</td><td>< IVI D L</td><td></td><td></td><td>0.96 <mdl< td=""><td>0</td><td></td><td>0.4</td><td></td><td></td></mdl<></td></mdl<>	0		0.36	< IVI D L			0.96 <mdl< td=""><td>0</td><td></td><td>0.4</td><td></td><td></td></mdl<>	0		0.4		
Silver Thallium	<mdl,e,g< td=""><td>1</td><td></td><td>9.6</td><td></td><td></td><td>-</td><td><mdl e,g<="" td=""><td>1</td><td></td><td>9.3</td><td></td><td></td></mdl></td></mdl,e,g<>	1		9.6			-	<mdl e,g<="" td=""><td>1</td><td></td><td>9.3</td><td></td><td></td></mdl>	1		9.3		
Zinc	49 B			45	В			51 B			9.3 51 B		
In 1000 entiments arranic sel	anium and thalli			45							ם וכ		

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E. L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

TABLE 4-2 (continue							
Sample Locator	N4	LTBD2	4	N		LTBC3	4
Date Sampled	May 14				May 1		
Sample Number	90004	36			9201		
% Solids: % TOC	71				80		
	2.5		881	17-1	<u> </u>		
BNA Organics (μg/kg dry weight) LPAHs	Value Qual	MDL	RDL	Value	Qual	MDL	RDL
Naphthalene	<mdl< td=""><td>50</td><td>110</td><td></td><td><mdl< td=""><td>30</td><td></td></mdl<></td></mdl<>	50	110		<mdl< td=""><td>30</td><td></td></mdl<>	30	
Acenaphthene	<mdl< td=""><td>10</td><td>28</td><td>-</td><td><mdl< td=""><td>10</td><td><u>58</u> 20</td></mdl<></td></mdl<>	10	28	-	<mdl< td=""><td>10</td><td><u>58</u> 20</td></mdl<>	10	<u>58</u> 20
Acenaphthylene	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>8</td><td>15</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>8</td><td>15</td></mdl<>	8	15
Phenanthrene	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Fluorene	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Anthracene	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
HPAHs					CIVIDE		
Fluoranthene	46	20	42		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Pyrene	44	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Benzo(a)anthracene	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Chrysene	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Benzo(b)fluoranthene	<mdl< td=""><td>50</td><td>110</td><td></td><td><mdl< td=""><td>30</td><td>58</td></mdl<></td></mdl<>	50	110		<mdl< td=""><td>30</td><td>58</td></mdl<>	30	58
Benzo(k)fluoranthene	<mdl< td=""><td>50</td><td>110</td><td></td><td><mdl< td=""><td>30</td><td>58</td></mdl<></td></mdl<>	50	110		<mdl< td=""><td>30</td><td>58</td></mdl<>	30	58
Benzo(a)pyrene	<mdl< td=""><td>40</td><td>70</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	40	70		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Indeno(1,2,3-Cd)Pyrene	<mdl< td=""><td>40</td><td>70</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	40	70		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Dibenzo(a,h)anthracene	<mdl< td=""><td>50</td><td>110</td><td></td><td><mdl< td=""><td>30</td><td>58</td></mdl<></td></mdl<>	50	110		<mdl< td=""><td>30</td><td>58</td></mdl<>	30	58
Benzo(g,h,i)perylene	<mdl< td=""><td>40</td><td>70</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	40	70		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Other					- 111122		
Di-N-Butyl Phthalate	<mdl< td=""><td>40</td><td>70</td><td></td><td><mdl,b< td=""><td>20</td><td>38</td></mdl,b<></td></mdl<>	40	70		<mdl,b< td=""><td>20</td><td>38</td></mdl,b<>	20	38
Benzyl Butyl Phthalate	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Bis(2-Ethylhexyl)Phthalate	<mdl< td=""><td>20</td><td>35</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	20	35		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Dibenzofuran	<mdl< td=""><td>40</td><td>70</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	40	70		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Benzoic Acid	280	100	210		<mdl< td=""><td>60</td><td>120</td></mdl<>	60	120
4-Methylphenol	<mdl< td=""><td>40</td><td>70</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	40	70		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Carbazole					<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Coprostanol					<mdl< td=""><td>60</td><td>120</td></mdl<>	60	120
PCBs (μg/kg dry weight)							
Aroclor 1254	<mdl< td=""><td>60</td><td>120</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	60	120		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Aroclor 1248	<mdl< td=""><td>60</td><td>120</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	60	120		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Aroclor 1260	<mdl< td=""><td>60</td><td>120</td><td></td><td><mdl< td=""><td>20</td><td>38</td></mdl<></td></mdl<>	60	120		<mdl< td=""><td>20</td><td>38</td></mdl<>	20	38
Volatiles (μg/kg dry weight)							
2-Butanone (MEK)						-11-1	
Acetone							
Metals (mg/kg dry weight)							
Mercury	0.056			0.023			
Aluminum	11000 B			8000	В		
Antimony	<mdl,e< td=""><td>0.8</td><td></td><td>1.2</td><td>E,G</td><td></td><td>-</td></mdl,e<>	0.8		1.2	E,G		-
Arsenic	5.6 G			7			
Barium	59 B,E			27			
Beryllium	0.28			0.23			
Cadmium	0.28 L			0.12	L		
Chromium	14			11			
Copper	15			9.4	В		
Iron	20000			14000	В		
Lead	9.9			3.5	E,B		
Nickel	17			10			
Selenium	0.85				<mdl< td=""><td>1</td><td></td></mdl<>	1	
Silver	<mdl< td=""><td>0.4</td><td></td><td>0.23</td><td></td><td></td><td></td></mdl<>	0.4		0.23			
Thallium	<mdl,e,g< td=""><td>0.8</td><td></td><td>9.3</td><td></td><td></td><td></td></mdl,e,g<>	0.8		9.3			
Zinc	55 B			38	В		

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E. <RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

Sample Locator	19	990 LTE	BC35		19	91 LTI	BC35		19	92 LTI	BC35	;	Re	plicate	1992	,
Date Sampled		May 14.				May 30.				/lay 19,				May 19,		
Sample Number		90004				91012				92011	B9		··	920119	9 4	
% Solids:		60				78				75				75		
% TOC		2.8				1		-		3.3				3.6		
BNA Organics (µg/kg dry)	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL	Value	Qual	MDL	. RDL	Value		MDL	. RD
LPAHs			_			•			····							
Naphthalene		<mdl< td=""><td>100</td><td>250</td><td></td><td><mdl< td=""><td>40</td><td>64</td><td></td><td><mdl< td=""><td>40</td><td>67</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	100	250		<mdl< td=""><td>40</td><td>64</td><td></td><td><mdl< td=""><td>40</td><td>67</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	40	64		<mdl< td=""><td>40</td><td>67</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<>	40	67		<mdl< td=""><td>40</td><td>67</td></mdl<>	40	67
Acenaphthene	150		30	67	49		9	17	31	•	9	17	39		9	
Acenaphthylene	140		40	83	27		10	22	27		10	23	25		10	23
Phenanthrene	1800		40	83	470		10	22	440		10	23	410		10	2:
Fluorene	230		40	83	45		10	22	37		10	23	47		10	2:
Anthracene	1200		40	83	120		10	22	240		10	23	190		ΤĎ	2
HPAHs									L							
Fluoranthene	5200		50	100	490		10	26	760		10	27	_	<mdl< td=""><td>10</td><td>27</td></mdl<>	10	27
Pyrene	5800		40	83	620		10	22	560		_10	23	570		10	23
Benzo(a)anthracene	2800		40	83	450		10	22	390		10	23	350	_	10	2
Chrysene	3800		40	83	650		10	22	520		10	23	470		10	2:
Benzo(b)fluoranthene	3500		100	250	590		40	64	760		40	67	760		40	6
Benzo(k)fluoranthene	3400		100	250	420		40	64	670		40	67	320		40	67
Benzo(a)pyrene	2700		80	170	410		30	42	470		30	44	390		30	44
Indeno(1,2,3-Cd)Pyrene	700		80	170	140		30	42		<mdl< td=""><td>30</td><td>44</td><td>170</td><td></td><td>30</td><td>44</td></mdl<>	30	44	170		30	44
Dibenzo(a,h)anthracene		<mdl< td=""><td>100</td><td>250</td><td>_</td><td><mdl< td=""><td>40</td><td>64</td><td></td><td><mdl< td=""><td>40</td><td>67</td><td>50</td><td><rdl< td=""><td>40</td><td>67</td></rdl<></td></mdl<></td></mdl<></td></mdl<>	100	250	_	<mdl< td=""><td>40</td><td>64</td><td></td><td><mdl< td=""><td>40</td><td>67</td><td>50</td><td><rdl< td=""><td>40</td><td>67</td></rdl<></td></mdl<></td></mdl<>	40	64		<mdl< td=""><td>40</td><td>67</td><td>50</td><td><rdl< td=""><td>40</td><td>67</td></rdl<></td></mdl<>	40	67	50	<rdl< td=""><td>40</td><td>67</td></rdl<>	40	67
Benzo(g,h,i)perylene	530		80	170	140		30	42		<mdl< td=""><td>30</td><td>44</td><td>190</td><td></td><td>30</td><td>44</td></mdl<>	30	44	190		30	44
Other BNA										•						
Di-N-Butyl Phthalate		<mdl< td=""><td>80</td><td>170</td><td></td><td>MDL,B</td><td>30</td><td>42</td><td></td><td>ИDL,В</td><td>30</td><td>44</td><td><</td><td>MDL,B</td><td>30</td><td>44</td></mdl<>	80	170		MDL,B	30	42		ИDL,В	30	44	<	MDL,B	30	44
Benzyl Butyl Phthalate	850		40	83	280		10	22	97		10	23	110		10	2:
Bis(2-Ethylhexyl)Phthalat	11000		40	83	1500		10	22	1300		10	23	1500	_	10	23
Dibenzofuran		<mdl< td=""><td>80</td><td>170</td><td></td><td><mdl< td=""><td>30</td><td>42</td><td></td><td><mdl< td=""><td>30</td><td>44</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	80	170		<mdl< td=""><td>30</td><td>42</td><td></td><td><mdl< td=""><td>30</td><td>44</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	42		<mdl< td=""><td>30</td><td>44</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	30	44		<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Benzoic Acid	1100		300	500		<mdl< td=""><td>60</td><td>130</td><td></td><td><mdl< td=""><td>70</td><td>130</td><td></td><td><mdl< td=""><td>70</td><td>130</td></mdl<></td></mdl<></td></mdl<>	60	130		<mdl< td=""><td>70</td><td>130</td><td></td><td><mdl< td=""><td>70</td><td>130</td></mdl<></td></mdl<>	70	130		<mdl< td=""><td>70</td><td>130</td></mdl<>	70	130
4-Methylphenol		<mdl< td=""><td>80</td><td>170</td><td></td><td><mdl< td=""><td>30</td><td>42</td><td></td><td><mdl< td=""><td>30</td><td>44</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	80	170		<mdl< td=""><td>30</td><td>42</td><td></td><td><mdl< td=""><td>30</td><td>44</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	42		<mdl< td=""><td>30</td><td>44</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	30	44		<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Carbazole						_			150		30	44	100		30	44
Coprostanol										<mdl< td=""><td>70</td><td>130</td><td></td><td><mdl< td=""><td>70</td><td>130</td></mdl<></td></mdl<>	70	130		<mdl< td=""><td>70</td><td>130</td></mdl<>	70	130
PCBs (µg/kg dry weight)	1200				222			440								
Aroclor 1254	1300			14	230			110	69		20	44	120		20	44
Aroclor 1248		<mdl< td=""><td>7</td><td>14</td><td>140</td><td></td><td></td><td>110</td><td>150</td><td></td><td>20</td><td>44</td><td>150</td><td></td><td>20</td><td>44</td></mdl<>	7	14	140			110	150		20	44	150		20	44
Aroclor 1260		<mdl< td=""><td></td><td>14</td><td>120</td><td></td><td>50</td><td>110</td><td>110</td><td></td><td>20</td><td>44</td><td>79</td><td></td><td>20</td><td>44</td></mdl<>		14	120		50	110	110		20	44	79		20	44
Volatiles (µg/kg dry weigl				02												
2-Butanone (MEK)	150		50	83												
Acetone Metals (mg/kg dry weigh	420		50	83												
Mercury	1.8				0.55				0.37				0.33			
	12000	В			11000					В				n		
Aluminum	6.7	E				MDLC	4		12000 2.7				12000	B		
Antimony Arsenic	13	Ğ			13	MDL,G	4		12	E,G			2.7	E,G		
Barium	97	B,E			58				52				12 67			
	0.15	D,E			0.26				0.31				0.33	-		
<u>Beryllium</u> Cadmium	4.8	L			<u>0.26</u> 1				0.31	L						
Chromium					<u>-</u>								1,1	<u> </u>		
	160				63	E B			32 48	В		-	37 79	В		
Copper Iron	18000				15000	Ď		-	16000	В			15000	В -		
Lead	480				120	-				E,B				<u>Е</u> ,В		
Nickel	480						-		81	C, B			120	E,B		
Selenium	1.3				38	<mdl< td=""><td>6</td><td></td><td>31</td><td><mdl< td=""><td>4</td><td></td><td>33</td><td>ZNADI</td><td>- 1</td><td></td></mdl<></td></mdl<>	6		31	<mdl< td=""><td>4</td><td></td><td>33</td><td>ZNADI</td><td>- 1</td><td></td></mdl<>	4		33	ZNADI	- 1	
Silver	1.3				5.1	SIVIDL			3.6	VIVIUL	_+		5.1	<mdl< td=""><td></td><td></td></mdl<>		
		IDL,E,G	2		3.1	~NAD1	20									
Thallium Zine					120	<mdl< td=""><td>30</td><td></td><td>11</td><td>- Р</td><td></td><td></td><td>9.3</td><td></td><td></td><td></td></mdl<>	30		11	- Р			9.3			
Zinc	320	В			120	В			91	В			120	В		

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E. L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

TABLE 4-3 (cor	ntinue	ed). (Cor	e O	: Org	anic	Cor	npo	ounds	and	Me	etal	s, Sec	ction	01	
Sample Locator		990 LTE				991 LT				92 LT						
Date Sampled		May 14,				May 30,				May 19.				92 Rep May 19,		:
Sample Number	·	900042				91012			-	92011				920119		
% Solids:		83				82			 	86				84	,,	
% TOC		0.1	-			0.08				1.4				1.3		
BNA Organics (µg/kg dry)	Value	Qual	MDI	RDL	Value	Qual		RDL	Value	Qual	MDI	RDI	Value	Qual	MDI	BDI
LPAHs	-												raide	Quui		NDL
Naphthalene		<mdl< td=""><td>50</td><td>90</td><td></td><td><mdl< td=""><td>40</td><td>61</td><td></td><td><mdl< td=""><td>30</td><td>58</td><td>Γ΄.</td><td><mdl< td=""><td>40</td><td>60</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	90		<mdl< td=""><td>40</td><td>61</td><td></td><td><mdl< td=""><td>30</td><td>58</td><td>Γ΄.</td><td><mdl< td=""><td>40</td><td>60</td></mdl<></td></mdl<></td></mdl<>	40	61		<mdl< td=""><td>30</td><td>58</td><td>Γ΄.</td><td><mdl< td=""><td>40</td><td>60</td></mdl<></td></mdl<>	30	58	Γ΄.	<mdl< td=""><td>40</td><td>60</td></mdl<>	40	60
Acenaphthene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>9</td><td>16</td><td></td><td><mdl< td=""><td>8</td><td>15</td><td>61</td><td></td><td>8</td><td>15</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>9</td><td>16</td><td></td><td><mdl< td=""><td>8</td><td>15</td><td>61</td><td></td><td>8</td><td>15</td></mdl<></td></mdl<>	9	16		<mdl< td=""><td>8</td><td>15</td><td>61</td><td></td><td>8</td><td>15</td></mdl<>	8	15	61		8	15
Acenaphthylene		<mdl< td=""><td>10</td><td>24</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	10	24		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Phenanthrene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>540</td><td>····</td><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>540</td><td>····</td><td>10</td><td>20</td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td>540</td><td>····</td><td>10</td><td>20</td></mdl<>	10	20	540	····	10	20
Fluorene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>48</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>48</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td>48</td><td></td><td>10</td><td>20</td></mdl<>	10	20	48		10	20
Anthracene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>110</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>110</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td>110</td><td></td><td>10</td><td>20</td></mdl<>	10	20	110		10	20
HPAHS																
Fluoranthene		<mdl< td=""><td>20</td><td>36</td><td></td><td><mdl< td=""><td>10</td><td>24</td><td></td><td><mdl< td=""><td>10</td><td>23</td><td>480</td><td></td><td>10</td><td>24</td></mdl<></td></mdl<></td></mdl<>	20	36		<mdl< td=""><td>10</td><td>24</td><td></td><td><mdl< td=""><td>10</td><td>23</td><td>480</td><td></td><td>10</td><td>24</td></mdl<></td></mdl<>	10	24		<mdl< td=""><td>10</td><td>23</td><td>480</td><td></td><td>10</td><td>24</td></mdl<>	10	23	480		10	24
Pyrene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>570</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>570</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td>570</td><td></td><td>10</td><td>20</td></mdl<>	10	20	570		10	20
Benzo(a)anthracene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>170</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>170</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td>170</td><td></td><td>10</td><td>20</td></mdl<>	10	20	170		10	20
Chrysene Ropzo(h)fluoranthana		<mdl< td=""><td>20 50</td><td>30 90</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>190</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20 50	30 90		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>190</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td>190</td><td></td><td>10</td><td>20</td></mdl<>	10	20	190		10	20
Benzo(b)fluoranthene		<mdl< td=""><td></td><td></td><td></td><td><mdl< td=""><td>40</td><td>61</td><td></td><td><mdl< td=""><td>30</td><td>58</td><td>180</td><td></td><td>40</td><td>60</td></mdl<></td></mdl<></td></mdl<>				<mdl< td=""><td>40</td><td>61</td><td></td><td><mdl< td=""><td>30</td><td>58</td><td>180</td><td></td><td>40</td><td>60</td></mdl<></td></mdl<>	40	61		<mdl< td=""><td>30</td><td>58</td><td>180</td><td></td><td>40</td><td>60</td></mdl<>	30	58	180		40	60
Benzo(k)fluoranthene Benzo(a)pyrene		<mdl< td=""><td>50</td><td>90</td><td></td><td><mdl< td=""><td>40</td><td>61</td><td></td><td><mdl< td=""><td>30</td><td>_58</td><td>87</td><td></td><td>40</td><td>60</td></mdl<></td></mdl<></td></mdl<>	50	90		<mdl< td=""><td>40</td><td>61</td><td></td><td><mdl< td=""><td>30</td><td>_58</td><td>87</td><td></td><td>40</td><td>60</td></mdl<></td></mdl<>	40	61		<mdl< td=""><td>30</td><td>_58</td><td>87</td><td></td><td>40</td><td>60</td></mdl<>	30	_58	87		40	60
		<mdl< td=""><td>30 30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>140</td><td></td><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	30 30	60		<mdl< td=""><td>20</td><td>40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>140</td><td></td><td>20</td><td>39</td></mdl<></td></mdl<>	20	40		<mdl< td=""><td>20</td><td>38</td><td>140</td><td></td><td>20</td><td>39</td></mdl<>	20	38	140		20	39
Indeno(1,2,3-Cd)Pyrene Dibenzo(a,h)anthracene		<mdl< td=""><td>50</td><td>90</td><td></td><td><mdl< td=""><td>20 40</td><td>40 61</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>_98</td><td>1.051</td><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	50	90		<mdl< td=""><td>20 40</td><td>40 61</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>_98</td><td>1.051</td><td>20</td><td>39</td></mdl<></td></mdl<>	20 40	40 61		<mdl< td=""><td>20</td><td>38</td><td>_98</td><td>1.051</td><td>20</td><td>39</td></mdl<>	20	38	_98	1.051	20	39
Benzo(g,h,i)perylene		<mdl< td=""><td>30</td><td>60</td><td></td><td></td><td></td><td></td><td></td><td><mdl< td=""><td>30</td><td>58</td><td>122</td><td><mdl< td=""><td>40</td><td>60</td></mdl<></td></mdl<></td></mdl<>	30	60						<mdl< td=""><td>30</td><td>58</td><td>122</td><td><mdl< td=""><td>40</td><td>60</td></mdl<></td></mdl<>	30	58	122	<mdl< td=""><td>40</td><td>60</td></mdl<>	40	60
Other BNA		<nidl< td=""><td>30</td><td>- 00</td><td></td><td><mdl< td=""><td>20</td><td>_40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>130</td><td></td><td>20</td><td>39</td></mdl<></td></mdl<></td></nidl<>	30	- 00		<mdl< td=""><td>20</td><td>_40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>130</td><td></td><td>20</td><td>39</td></mdl<></td></mdl<>	20	_40		<mdl< td=""><td>20</td><td>38</td><td>130</td><td></td><td>20</td><td>39</td></mdl<>	20	38	130		20	39
Di-N-Butyl Phthalate		<mdl< td=""><td>30</td><td>60</td><td></td><td>-MDL.B</td><td>20</td><td>40</td><td></td><td>-AADI D</td><td>20</td><td>20</td><td></td><td>A401 B</td><td>- 20</td><td>20</td></mdl<>	30	60		-MDL.B	20	40		-AADI D	20	20		A401 B	- 20	20
Benzyl Butyl Phthalate		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl,< td=""><td>10</td><td>21</td><td></td><td><mdl,b <mdl< td=""><td>10</td><td>38 20</td><td></td><td><mdl,b< td=""><td></td><td>39</td></mdl,b<></td></mdl<></mdl,b </td></mdl,<></td></mdl<>	20	30		<mdl,< td=""><td>10</td><td>21</td><td></td><td><mdl,b <mdl< td=""><td>10</td><td>38 20</td><td></td><td><mdl,b< td=""><td></td><td>39</td></mdl,b<></td></mdl<></mdl,b </td></mdl,<>	10	21		<mdl,b <mdl< td=""><td>10</td><td>38 20</td><td></td><td><mdl,b< td=""><td></td><td>39</td></mdl,b<></td></mdl<></mdl,b 	10	38 20		<mdl,b< td=""><td></td><td>39</td></mdl,b<>		39
Bis(2-Ethylhexyl)Phthalate	1	<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Dibenzofuran	•	<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>20</td><td><mdl <rdl< td=""><td>20</td><td>20 39</td></rdl<></mdl </td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>20</td><td><mdl <rdl< td=""><td>20</td><td>20 39</td></rdl<></mdl </td></mdl<></td></mdl<>	20	40		<mdl< td=""><td>20</td><td>38</td><td>20</td><td><mdl <rdl< td=""><td>20</td><td>20 39</td></rdl<></mdl </td></mdl<>	20	38	20	<mdl <rdl< td=""><td>20</td><td>20 39</td></rdl<></mdl 	20	20 39
Benzoic Acid		<mdl< td=""><td>90</td><td>180</td><td></td><td><mdl< td=""><td>60</td><td>120</td><td></td><td><mdl< td=""><td>60</td><td>120</td><td>20</td><td><mdl< td=""><td>60</td><td>120</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	90	180		<mdl< td=""><td>60</td><td>120</td><td></td><td><mdl< td=""><td>60</td><td>120</td><td>20</td><td><mdl< td=""><td>60</td><td>120</td></mdl<></td></mdl<></td></mdl<>	60	120		<mdl< td=""><td>60</td><td>120</td><td>20</td><td><mdl< td=""><td>60</td><td>120</td></mdl<></td></mdl<>	60	120	20	<mdl< td=""><td>60</td><td>120</td></mdl<>	60	120
4-Methylphenol		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>-</td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>40</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td>-</td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	20	40		<mdl< td=""><td>20</td><td>38</td><td>-</td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38	-	<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Carbazole		_ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				SIVIDE		70		<mdl< td=""><td>20</td><td>38</td><td>85</td><td>CIVIDL</td><td>20</td><td>39</td></mdl<>	20	38	85	CIVIDL	20	39
Coprostanol										<mdl< td=""><td>60</td><td>120</td><td>0.5</td><td><mdl< td=""><td>60</td><td>120</td></mdl<></td></mdl<>	60	120	0.5	<mdl< td=""><td>60</td><td>120</td></mdl<>	60	120
PCBs (µg/kg dry weight)				-						XIVID E	- 00	120		<1VIDE	00	120
Aroclor 1254		<mdl< td=""><td>50</td><td>100</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	100		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Arocior 1248		<mdl< td=""><td>50</td><td>100</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	100		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Aroclor 1260		<mdl< td=""><td>50</td><td>100</td><td></td><td><mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	50	100		<mdl< td=""><td>10</td><td>21</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	10	21		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Volatiles (μg/kg dry weigh	it)															
2-Butanone (MEK)																
Acetone																
Metals (mg/kg dry weight	t)															
Mercury	0.036				0.02				0.02	_			0.02			
Aluminum	8000	В			8700				8700	В			9600	В		
Antimony		<mdl,e< td=""><td>1</td><td></td><td></td><td>MDL,G</td><td>4</td><td></td><td>1.2</td><td>E,G</td><td></td><td></td><td>2.4</td><td>E,G</td><td></td><td></td></mdl,e<>	1			MDL,G	4		1.2	E,G			2.4	E,G		
Arsenic	4.8	<u>G</u>			9.8				7				7.1			
Barium	34	B,E			37				30]	40			
Beryllium	0.12	·			0.24				0.23				0.25			
Cadmium	10	<mdl,l< td=""><td>0</td><td></td><td>-17</td><td><mdl< td=""><td>0</td><td></td><td>0.09</td><td>L</td><td></td><td></td><td>0.12</td><td>L</td><td></td><td></td></mdl<></td></mdl,l<>	0		-17	<mdl< td=""><td>0</td><td></td><td>0.09</td><td>L</td><td></td><td></td><td>0.12</td><td>L</td><td></td><td></td></mdl<>	0		0.09	L			0.12	L		
Chromium	10				13	E			11				14			
Copper Iron	12 18000				8.5	В		i	12	B			12	В		
Lead					17000				15000	В			17000	В		
Nickel	11 12				3.7 9.8				3.5 11	E,B			8.6	E,B		
Selenium	12	<mdl< td=""><td>1</td><td></td><td>7.0</td><td>-MD!</td><td>-</td><td></td><td></td><td>-1401</td><td></td><td></td><td>13</td><td>- N 41531</td><td></td><td></td></mdl<>	1		7.0	-MD!	-			-1401			13	- N 41531		
Silver		<mdl< td=""><td>0</td><td></td><td></td><td><mdl <mdl< td=""><td><u>6</u></td><td></td><td>0.35</td><td><mdl< td=""><td>2</td><td></td><td>0.36</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></mdl </td></mdl<>	0			<mdl <mdl< td=""><td><u>6</u></td><td></td><td>0.35</td><td><mdl< td=""><td>2</td><td></td><td>0.36</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></mdl 	<u>6</u>		0.35	<mdl< td=""><td>2</td><td></td><td>0.36</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	2		0.36	<mdl< td=""><td>2</td><td></td></mdl<>	2	
Thallium	٦,	ADL E.G	1			<mdl< td=""><td>20</td><td></td><td>10</td><td></td><td></td><td></td><td>12</td><td></td><td></td><td></td></mdl<>	20		10				12			
Zinc	48	B	- 1		44	- B	20		41	В			45	В		— Н
In 1990 antimony arsenic se													73	U		لــــا

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E.

<RDL - Detected below quantification limits</p>
<MDL - Undetected at the method detection limit</p>

B - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

Sample Locator	•	1990 LTE	3C35			1992 LT	BC35	1	19	992 Rep	licate	
Date Sampled		May 14,	90			May 19				May 19		
Sample Number	,	900042				92011				92011		
% Solids:		83				87				85		
% TOC		0.08				1.5				0.84		
BNA Organics (µg/kg dry)	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL
LPAHs								•				
Naphthalene		<mdl< td=""><td>50</td><td>90</td><td></td><td><mdl< td=""><td>30</td><td>57</td><td></td><td><mdl< td=""><td>40</td><td>59</td></mdl<></td></mdl<></td></mdl<>	50	90		<mdl< td=""><td>30</td><td>57</td><td></td><td><mdl< td=""><td>40</td><td>59</td></mdl<></td></mdl<>	30	57		<mdl< td=""><td>40</td><td>59</td></mdl<>	40	59
Acenaphthene		<mdl< td=""><td>10</td><td>24</td><td></td><td><mdl< td=""><td>8</td><td></td><td></td><td><mdl< td=""><td>. 8</td><td></td></mdl<></td></mdl<></td></mdl<>	10	24		<mdl< td=""><td>8</td><td></td><td></td><td><mdl< td=""><td>. 8</td><td></td></mdl<></td></mdl<>	8			<mdl< td=""><td>. 8</td><td></td></mdl<>	. 8	
Acenaphthylene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Phenanthrene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Fluorene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Anthracene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
HPAHs				5.4								
Fluoranthene		<mdl< td=""><td>20</td><td>36</td><td></td><td><mdl< td=""><td>10</td><td>23</td><td></td><td><mdl< td=""><td>10</td><td>24</td></mdl<></td></mdl<></td></mdl<>	20	36		<mdl< td=""><td>10</td><td>23</td><td></td><td><mdl< td=""><td>10</td><td>24</td></mdl<></td></mdl<>	10	23		<mdl< td=""><td>10</td><td>24</td></mdl<>	10	24
Pyrene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Benzo(a)anthracene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Chrysene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Benzo(b)fluoranthene		<mdl< td=""><td>50</td><td>90 90</td><td></td><td><mdl <mdl< td=""><td>30 30</td><td>57 57</td><td>_</td><td><mdl< td=""><td>40 40</td><td>59 59</td></mdl<></td></mdl<></mdl </td></mdl<>	50	90 90		<mdl <mdl< td=""><td>30 30</td><td>57 57</td><td>_</td><td><mdl< td=""><td>40 40</td><td>59 59</td></mdl<></td></mdl<></mdl 	30 30	57 57	_	<mdl< td=""><td>40 40</td><td>59 59</td></mdl<>	40 40	59 59
Benzo(k)fluoranthene		<mdl< td=""><td>30</td><td>60</td><td></td><td></td><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	30	60			20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Benzo(a)pyrene Indeno(1,2,3-Cd)Pyrene		<mdl <mdl< td=""><td>30</td><td>60</td><td></td><td><mdl <mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></mdl </td></mdl<></mdl 	30	60		<mdl <mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></mdl 	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Dibenzo(a,h)anthracene		<mdl< td=""><td>50</td><td>90</td><td></td><td><mdl< td=""><td>30</td><td>57</td><td></td><td><mdl< td=""><td>40</td><td>59</td></mdl<></td></mdl<></td></mdl<>	50	90		<mdl< td=""><td>30</td><td>57</td><td></td><td><mdl< td=""><td>40</td><td>59</td></mdl<></td></mdl<>	30	57		<mdl< td=""><td>40</td><td>59</td></mdl<>	40	59
Benzo(g,h,i)perylene		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Other BNA		CIVIDE	30	- 00		CIVIDE	20	30		CIVIDE		
Di-N-Butyl Phthalate		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl.b< td=""><td>20</td><td>38</td><td></td><td><mdl,b< td=""><td>20</td><td>39</td></mdl,b<></td></mdl.b<></td></mdl<>	30	60		<mdl.b< td=""><td>20</td><td>38</td><td></td><td><mdl,b< td=""><td>20</td><td>39</td></mdl,b<></td></mdl.b<>	20	38		<mdl,b< td=""><td>20</td><td>39</td></mdl,b<>	20	39
Benzyl Butyl Phthalate		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>-</td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td>-</td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20	-	<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Bis(2-Ethylhexyl)Phthalate		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>20</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>20</td></mdl<>	10	20
Dibenzofuran		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Benzoic Acid		<mdl< td=""><td>90</td><td>180</td><td></td><td><mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>60</td><td>120</td></mdl<></td></mdl<></td></mdl<>	90	180		<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>60</td><td>120</td></mdl<></td></mdl<>	60	110		<mdl< td=""><td>60</td><td>120</td></mdl<>	60	120
4-Methylphenol		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Carbazole						<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Coprostanol						<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>60</td><td>120</td></mdl<></td></mdl<>	60	110		<mdl< td=""><td>60</td><td>120</td></mdl<>	60	120
PCBs (µg/kg dry weight)												
Aroclor 1254		<mdl< td=""><td>50</td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	50	100		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Aroclor 1248		<mdl< td=""><td>50</td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	50	100		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Aroclor 1260		<mdl< td=""><td>50</td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<></td></mdl<>	50	100		<mdl< td=""><td>20</td><td>38</td><td></td><td><mdl< td=""><td>20</td><td>39</td></mdl<></td></mdl<>	20	38		<mdl< td=""><td>20</td><td>39</td></mdl<>	20	39
Volatiles (μg/kg dry weight)					<u>-</u>							
2-Butanone (MEK)												
Acetone												
Metals (mg/kg dry weight)												
Mercury	0.024					<mdl< td=""><td>0.02</td><td></td><td></td><td><mdl< td=""><td>0.02</td><td></td></mdl<></td></mdl<>	0.02			<mdl< td=""><td>0.02</td><td></td></mdl<>	0.02	
Aluminum	8200	В			8500	В			8600	В		
Antimony		<mdl,e< td=""><td>1</td><td></td><td>1.1</td><td>E,G</td><td></td><td></td><td>2.4</td><td>E,G</td><td></td><td></td></mdl,e<>	1		1.1	E,G			2.4	E,G		
Arsenic	4.8	<u>G</u>			8				7.1			
Barium	42	B,E			33				36			
Beryllium	0.12				0.23				0.24			
Cadmium	0.24	L			0.11	L				<mdl,l< td=""><td>0.1</td><td></td></mdl,l<>	0.1	
Chromium	14				11				13			
Copper	10000				16000	В		.	11	В		
Iron	18000				16000	В			15000	В		
Lead Nickel	4.8 14				3.4 10	E,B			3.5 12	E,B		
Nickel Selenium	14	<mdl< td=""><td>1</td><td></td><td>10</td><td><mdl< td=""><td>1</td><td></td><td>12</td><td><mdl< td=""><td>. 1</td><td></td></mdl<></td></mdl<></td></mdl<>	1		10	<mdl< td=""><td>1</td><td></td><td>12</td><td><mdl< td=""><td>. 1</td><td></td></mdl<></td></mdl<>	1		12	<mdl< td=""><td>. 1</td><td></td></mdl<>	. 1	
		<mdl< td=""><td>0.4</td><td></td><td>0.23</td><td>< IVI D L</td><td>_</td><td></td><td>0.24</td><td>SIVIDE</td><td>1</td><td></td></mdl<>	0.4		0.23	< IVI D L	_ 		0.24	SIVIDE	1	
Silver Thallium		<mdl,e,c< td=""><td></td><td></td><td>10</td><td></td><td></td><td>-</td><td>9.4</td><td></td><td></td><td></td></mdl,e,c<>			10			-	9.4			
Zinc	47	B	, I		40	В			46	В		

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E.

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

TABLE 4-4 (contin	nued)). C	ore (0: 0	rganic (Com	pour	nds and I	_ Meta	als,	Section	ons O	3.	04
Sample Locator		1990			O3 199			O4 1990			04	1992		
Date Sampled		May 1				19, 92		May		.33		May 19		L33
Sample Number		9000				1192		9000				92011		
% Solids:	-	82				82		8				79	73	
% TOC		0.6				.77		 	<u> </u>		 	1.4		
BNA Organics (µg/kg dry)	Value	Qual	MDL	RDL	Value Qu	al MD	L RDL	Value Qua	I MDI	RDL	Value		MD	L RDI
LPAHs											Tuluc	Quui	1410	
Naphthalene		<mdl< td=""><td>50</td><td>91</td><td><m< td=""><td>DL 40</td><td>) 61</td><td><mc< td=""><td>L 50</td><td>94</td><td>T</td><td><mdl< td=""><td>40</td><td>6</td></mdl<></td></mc<></td></m<></td></mdl<>	50	91	<m< td=""><td>DL 40</td><td>) 61</td><td><mc< td=""><td>L 50</td><td>94</td><td>T</td><td><mdl< td=""><td>40</td><td>6</td></mdl<></td></mc<></td></m<>	DL 40) 61	<mc< td=""><td>L 50</td><td>94</td><td>T</td><td><mdl< td=""><td>40</td><td>6</td></mdl<></td></mc<>	L 50	94	T	<mdl< td=""><td>40</td><td>6</td></mdl<>	40	6
Acenaphthene		<mdl< td=""><td>10</td><td>24</td><td><m< td=""><td></td><td>9 16</td><td></td><td></td><td>31</td><td></td><td><mdl< td=""><td>- 19</td><td></td></mdl<></td></m<></td></mdl<>	10	24	<m< td=""><td></td><td>9 16</td><td></td><td></td><td>31</td><td></td><td><mdl< td=""><td>- 19</td><td></td></mdl<></td></m<>		9 16			31		<mdl< td=""><td>- 19</td><td></td></mdl<>	- 19	
Acenaphthylene		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td></td><td>25</td><td></td><td><mdl< td=""><td></td><td></td></mdl<></td></md<></td></m<></td></mdl<>	20	30	<m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td></td><td>25</td><td></td><td><mdl< td=""><td></td><td></td></mdl<></td></md<></td></m<>	DL 10	21	<md< td=""><td></td><td>25</td><td></td><td><mdl< td=""><td></td><td></td></mdl<></td></md<>		25		<mdl< td=""><td></td><td></td></mdl<>		
Phenanthrene		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td>DL 10</td><td>) 21</td><td><me< td=""><td>L 20</td><td>31</td><td>59</td><td>_</td><td>10</td><td></td></me<></td></m<></td></mdl<>	20	30	<m< td=""><td>DL 10</td><td>) 21</td><td><me< td=""><td>L 20</td><td>31</td><td>59</td><td>_</td><td>10</td><td></td></me<></td></m<>	DL 10) 21	<me< td=""><td>L 20</td><td>31</td><td>59</td><td>_</td><td>10</td><td></td></me<>	L 20	31	59	_	10	
Fluorene		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td>L 20</td><td>31</td><td></td><td><mdl< td=""><td>10</td><td></td></mdl<></td></md<></td></m<></td></mdl<>	20	30	<m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td>L 20</td><td>31</td><td></td><td><mdl< td=""><td>10</td><td></td></mdl<></td></md<></td></m<>	DL 10	21	<md< td=""><td>L 20</td><td>31</td><td></td><td><mdl< td=""><td>10</td><td></td></mdl<></td></md<>	L 20	31		<mdl< td=""><td>10</td><td></td></mdl<>	10	
Anthracene		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td>L 20</td><td>31</td><td></td><td><mdl< td=""><td>10</td><td></td></mdl<></td></md<></td></m<></td></mdl<>	20	30	<m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td>L 20</td><td>31</td><td></td><td><mdl< td=""><td>10</td><td></td></mdl<></td></md<></td></m<>	DL 10	21	<md< td=""><td>L 20</td><td>31</td><td></td><td><mdl< td=""><td>10</td><td></td></mdl<></td></md<>	L 20	31		<mdl< td=""><td>10</td><td></td></mdl<>	10	
HPAHs									-					
Fluoranthene		<mdl< td=""><td>20</td><td>37</td><td><m< td=""><td>DL 10</td><td>24</td><td><md< td=""><td>L 20</td><td>38</td><td>160</td><td></td><td>10</td><td>2:</td></md<></td></m<></td></mdl<>	20	37	<m< td=""><td>DL 10</td><td>24</td><td><md< td=""><td>L 20</td><td>38</td><td>160</td><td></td><td>10</td><td>2:</td></md<></td></m<>	DL 10	24	<md< td=""><td>L 20</td><td>38</td><td>160</td><td></td><td>10</td><td>2:</td></md<>	L 20	38	160		10	2:
Pyrene		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td></td><td></td><td></td><td></td><td>31</td><td>72</td><td></td><td>10</td><td></td></m<></td></mdl<>	20	30	<m< td=""><td></td><td></td><td></td><td></td><td>31</td><td>72</td><td></td><td>10</td><td></td></m<>					31	72		10	
Benzo(a)anthracene		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td></td><td></td><td><md< td=""><td>L 20</td><td>31</td><td>39</td><td>_</td><td>10</td><td></td></md<></td></m<></td></mdl<>	20	30	<m< td=""><td></td><td></td><td><md< td=""><td>L 20</td><td>31</td><td>39</td><td>_</td><td>10</td><td></td></md<></td></m<>			<md< td=""><td>L 20</td><td>31</td><td>39</td><td>_</td><td>10</td><td></td></md<>	L 20	31	39	_	10	
Chrysene		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td>L 20</td><td>31</td><td>80</td><td></td><td>10</td><td></td></md<></td></m<></td></mdl<>	20	30	<m< td=""><td>DL 10</td><td>21</td><td><md< td=""><td>L 20</td><td>31</td><td>80</td><td></td><td>10</td><td></td></md<></td></m<>	DL 10	21	<md< td=""><td>L 20</td><td>31</td><td>80</td><td></td><td>10</td><td></td></md<>	L 20	31	80		10	
Benzo(b)fluoranthene		<mdl< td=""><td>50</td><td>91</td><td><m< td=""><td></td><td></td><td><md< td=""><td></td><td>94</td><td>50</td><td><rdl< td=""><td>40</td><td></td></rdl<></td></md<></td></m<></td></mdl<>	50	91	<m< td=""><td></td><td></td><td><md< td=""><td></td><td>94</td><td>50</td><td><rdl< td=""><td>40</td><td></td></rdl<></td></md<></td></m<>			<md< td=""><td></td><td>94</td><td>50</td><td><rdl< td=""><td>40</td><td></td></rdl<></td></md<>		94	50	<rdl< td=""><td>40</td><td></td></rdl<>	40	
Benzo(k)fluoranthene		<mdl< td=""><td>50</td><td>91</td><td><m< td=""><td></td><td></td><td><md< td=""><td>L 50</td><td>94</td><td></td><td><mdl< td=""><td>40</td><td>63</td></mdl<></td></md<></td></m<></td></mdl<>	50	91	<m< td=""><td></td><td></td><td><md< td=""><td>L 50</td><td>94</td><td></td><td><mdl< td=""><td>40</td><td>63</td></mdl<></td></md<></td></m<>			<md< td=""><td>L 50</td><td>94</td><td></td><td><mdl< td=""><td>40</td><td>63</td></mdl<></td></md<>	L 50	94		<mdl< td=""><td>40</td><td>63</td></mdl<>	40	63
Benzo(a)pyrene		<mdl< td=""><td></td><td>61</td><td><m< td=""><td></td><td></td><td></td><td></td><td>63</td><td>46</td><td></td><td>30</td><td>42</td></m<></td></mdl<>		61	<m< td=""><td></td><td></td><td></td><td></td><td>63</td><td>46</td><td></td><td>30</td><td>42</td></m<>					63	46		30	42
Indeno(1,2,3-Cd)Pyrene			3000		<m< td=""><td></td><td></td><td><md< td=""><td>L 30</td><td>63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></md<></td></m<>			<md< td=""><td>L 30</td><td>63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></md<>	L 30	63		<mdl< td=""><td>30</td><td>42</td></mdl<>	30	42
Dibenzo(a,h)anthracene	_	<mdl< td=""><td>30</td><td> 61</td><td> <m< td=""><td></td><td></td><td><md< td=""><td>L 50</td><td>94</td><td></td><td><mdl< td=""><td>40</td><td>63</td></mdl<></td></md<></td></m<></td></mdl<>	30	61	<m< td=""><td></td><td></td><td><md< td=""><td>L 50</td><td>94</td><td></td><td><mdl< td=""><td>40</td><td>63</td></mdl<></td></md<></td></m<>			<md< td=""><td>L 50</td><td>94</td><td></td><td><mdl< td=""><td>40</td><td>63</td></mdl<></td></md<>	L 50	94		<mdl< td=""><td>40</td><td>63</td></mdl<>	40	63
Benzo(g,h,i)perylene		<mdl< td=""><td>30</td><td>61</td><td><m< td=""><td>DL 20</td><td>40</td><td><md< td=""><td>L 30</td><td>63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></md<></td></m<></td></mdl<>	30	61	<m< td=""><td>DL 20</td><td>40</td><td><md< td=""><td>L 30</td><td>63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></md<></td></m<>	DL 20	40	<md< td=""><td>L 30</td><td>63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></md<>	L 30	63		<mdl< td=""><td>30</td><td>42</td></mdl<>	30	42
Other BNA														
Di-N-Butyl Phthalate		<mdl< td=""><td>30</td><td>61</td><td><mdl< td=""><td></td><td></td><td></td><td></td><td>63</td><td><</td><td>MDL,B</td><td>30</td><td>42</td></mdl<></td></mdl<>	30	61	<mdl< td=""><td></td><td></td><td></td><td></td><td>63</td><td><</td><td>MDL,B</td><td>30</td><td>42</td></mdl<>					63	<	MDL,B	30	42
Benzyl Butyl Phthalate		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td></td><td></td><td><md< td=""><td></td><td>31</td><td></td><td><mdl< td=""><td>10</td><td>22</td></mdl<></td></md<></td></m<></td></mdl<>	20	30	<m< td=""><td></td><td></td><td><md< td=""><td></td><td>31</td><td></td><td><mdl< td=""><td>10</td><td>22</td></mdl<></td></md<></td></m<>			<md< td=""><td></td><td>31</td><td></td><td><mdl< td=""><td>10</td><td>22</td></mdl<></td></md<>		31		<mdl< td=""><td>10</td><td>22</td></mdl<>	10	22
Bis(2-Ethylhexyl)Phthalate		<mdl< td=""><td>20</td><td>30</td><td><m< td=""><td></td><td></td><td><md< td=""><td></td><td>31</td><td></td><td><mdl< td=""><td>10</td><td>22</td></mdl<></td></md<></td></m<></td></mdl<>	20	30	<m< td=""><td></td><td></td><td><md< td=""><td></td><td>31</td><td></td><td><mdl< td=""><td>10</td><td>22</td></mdl<></td></md<></td></m<>			<md< td=""><td></td><td>31</td><td></td><td><mdl< td=""><td>10</td><td>22</td></mdl<></td></md<>		31		<mdl< td=""><td>10</td><td>22</td></mdl<>	10	22
Dibenzofuran		<mdl< td=""><td>30</td><td>61</td><td><m< td=""><td></td><td></td><td></td><td></td><td>63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></m<></td></mdl<>	30	61	<m< td=""><td></td><td></td><td></td><td></td><td>63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></m<>					63		<mdl< td=""><td>30</td><td>42</td></mdl<>	30	42
Benzoic Acid		<mdl< td=""><td>90</td><td>180</td><td><m< td=""><td></td><td></td><td><md< td=""><td></td><td>190</td><td></td><td><mdl< td=""><td>60</td><td>130</td></mdl<></td></md<></td></m<></td></mdl<>	90	180	<m< td=""><td></td><td></td><td><md< td=""><td></td><td>190</td><td></td><td><mdl< td=""><td>60</td><td>130</td></mdl<></td></md<></td></m<>			<md< td=""><td></td><td>190</td><td></td><td><mdl< td=""><td>60</td><td>130</td></mdl<></td></md<>		190		<mdl< td=""><td>60</td><td>130</td></mdl<>	60	130
4-Methylphenol		<mdl< td=""><td>30</td><td>61</td><td><m></m></td><td></td><td></td><td><md< td=""><td>L 30</td><td> 63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></md<></td></mdl<>	30	61	<m></m>			<md< td=""><td>L 30</td><td> 63</td><td></td><td><mdl< td=""><td>30</td><td>42</td></mdl<></td></md<>	L 30	63		<mdl< td=""><td>30</td><td>42</td></mdl<>	30	42
Carbazole					<m></m>							<mdl< td=""><td>30</td><td>42</td></mdl<>	30	42
Coprostanol					<m< td=""><td>DL 60</td><td>120</td><td></td><td></td><td>_</td><td></td><td><mdl< td=""><td>60</td><td>130</td></mdl<></td></m<>	DL 60	120			_		<mdl< td=""><td>60</td><td>130</td></mdl<>	60	130
PCBs (µg/kg dry weight)		1451		100										
Aroclor 1254		<mdl< td=""><td>50</td><td>100</td><td><m< td=""><td></td><td></td><td></td><td></td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>42</td></mdl<></td></m<></td></mdl<>	50	100	<m< td=""><td></td><td></td><td></td><td></td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>42</td></mdl<></td></m<>					100		<mdl< td=""><td>20</td><td>42</td></mdl<>	20	42
Aroclor 1248		<mdl< td=""><td>50</td><td>100</td><td><m></m></td><td></td><td></td><td>*****</td><td></td><td>100</td><td>30</td><td><rdl< td=""><td>20</td><td>42</td></rdl<></td></mdl<>	50	100	<m></m>			*****		100	30	<rdl< td=""><td>20</td><td>42</td></rdl<>	20	42
Aroclor 1260		<mdl< td=""><td>50</td><td>100</td><td> <m< td=""><td>DL 20</td><td>40</td><td><md< td=""><td>L 50</td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>42</td></mdl<></td></md<></td></m<></td></mdl<>	50	100	<m< td=""><td>DL 20</td><td>40</td><td><md< td=""><td>L 50</td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>42</td></mdl<></td></md<></td></m<>	DL 20	40	<md< td=""><td>L 50</td><td>100</td><td></td><td><mdl< td=""><td>20</td><td>42</td></mdl<></td></md<>	L 50	100		<mdl< td=""><td>20</td><td>42</td></mdl<>	20	42
Volatiles (µg/kg dry weight	.)							r "						
2-Butanone (MEK) Acetone														
Metals (mg/kg dry weight)														
Mercury	0.037				0.024			014			0.063			
Aluminum	8400	- п						0.14			0.063			
Antimony		<u>B</u> MDL.E	1	-	9500 B 2.4 E.			9000 B			9500	<u>B</u>		
Arsenic	4.9	G G	<u>'</u>		2.4 E,0	<u> </u>		<mdl,i< td=""><td>1</td><td></td><td>1.3</td><td>E,G</td><td></td><td></td></mdl,i<>	1		1.3	E,G		
Barium	28	B,E			37			5 G 31 B.E			6.3		_	
Beryllium	0.12	D,L			0.24			31 B,E 0.13			33			
Cadmium	0.12				0.24 0.12 L						0.25			
Chromium	12	_ ե		-	13			<mdl,i< td=""><td>_ 0</td><td>-</td><td>0.13</td><td>L</td><td></td><td></td></mdl,i<>	_ 0	-	0.13	L		
Copper	10				13 12 B			11			14 14	В		
Iron	18000	***			16000 B			19000						
Lead	7.3				3.7 E,I			6.3			14000	В		
Nickel	12				3.7 E,I	<u>, </u>		12			8	E,B		
Selenium		<mdl< td=""><td>0.9</td><td></td><td><u></u></td><td>DL 1</td><td></td><td>0.63</td><td></td><td></td><td>12</td><td>-MD!</td><td></td><td></td></mdl<>	0.9		<u></u>	DL 1		0.63			12	-MD!		
Silver		<mdl< td=""><td>0.4</td><td>1</td><td>0.24</td><td>/L !</td><td></td><td>0.63 <md< td=""><td>L 0</td><td>- </td><td>0.51</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></md<></td></mdl<>	0.4	1	0.24	/L !		0.63 <md< td=""><td>L 0</td><td>- </td><td>0.51</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></md<>	L 0	-	0.51	<mdl< td=""><td>1</td><td></td></mdl<>	1	
Thallium	∠Mr	DL,E,G	0.9		11		l l	<mdl,e,c< td=""><td>1</td><td>i</td><td>8.9</td><td></td><td></td><td></td></mdl,e,c<>	1	i	8.9			

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E. <RDL - Detected below quantification limits

L - High standard reference material recovery

<MDL - Undetected at the method detection limit

E - Estimate based on high relative percent difference in or

B - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery
E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

Sample Locator		1990 LT	BC34			1991 LTE	3C34			1992 LTE	3C34	
Date Sampled		May 30,				May 30,				May 19,		
Sample Number		90004				91012				920120)5	
% Solids:		38		_		72			-	65		
% TOC		4.1				1.9				4.3		
BNA Organics (μg/kg dry)	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL
LPAHs								•				
Naphthalene	_	<mdl< td=""><td>100</td><td>200</td><td></td><td><mdl< td=""><td> 40</td><td>69</td><td>50</td><td><rdl< td=""><td>50</td><td> 77</td></rdl<></td></mdl<></td></mdl<>	100	200		<mdl< td=""><td> 40</td><td>69</td><td>50</td><td><rdl< td=""><td>50</td><td> 77</td></rdl<></td></mdl<>	40	69	50	<rdl< td=""><td>50</td><td> 77</td></rdl<>	50	77
Acenaphthene		<mdl< td=""><td>30</td><td>53</td><td></td><td><mdl< td=""><td>10</td><td>18</td><td>51</td><td></td><td>10</td><td>20</td></mdl<></td></mdl<>	30	53		<mdl< td=""><td>10</td><td>18</td><td>51</td><td></td><td>10</td><td>20</td></mdl<>	10	18	51		10	20
Acenaphthylene		<mdl< td=""><td>30</td><td>66</td><td></td><td><mdl< td=""><td>10</td><td>24</td><td>51</td><td></td><td>10</td><td>26</td></mdl<></td></mdl<>	30	66		<mdl< td=""><td>10</td><td>24</td><td>51</td><td></td><td>10</td><td>26</td></mdl<>	10	24	51		10	26
Phenanthrene	530		30	66	170		10	24	370		10	26
Fluorene		<mdl< td=""><td>30</td><td>66</td><td></td><td><mdl< td=""><td>10</td><td>24</td><td>65</td><td></td><td>10</td><td>26</td></mdl<></td></mdl<>	30	66		<mdl< td=""><td>10</td><td>24</td><td>65</td><td></td><td>10</td><td>26</td></mdl<>	10	24	65		10	26
Anthracene	130		30	66	54		10	24	100		10	26
HPAHs												
Fluoranthene	660		40	79	360		10	28	570		20	31
Pyrene	1000		30	66	390		10	24	1000		10	26
Benzo(a)anthracene	340		30	66	180		10	24	370		10	26
Chrysene	500		30	66	220		10	24	510		10	26
Benzo(b)fluoranthene	610		100	200	260		40	69	880		50	77
Benzo(k)fluoranthene	450		100	200	190		40	69	710		50	77
Benzo(a)pyrene	470 210		70	130	170		30	46	540		30	51
Indeno(1,2,3-Cd)Pyrene	210	-MADI	70	130	56	AMDI	30	46	220	-1401	30	51
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	180	<mdl< td=""><td>100 70</td><td>200 130</td><td></td><td><mdl< td=""><td>40 30</td><td>69</td><td>220</td><td>_<mdl< td=""><td>50</td><td>77</td></mdl<></td></mdl<></td></mdl<>	100 70	200 130		<mdl< td=""><td>40 30</td><td>69</td><td>220</td><td>_<mdl< td=""><td>50</td><td>77</td></mdl<></td></mdl<>	40 30	69	220	_ <mdl< td=""><td>50</td><td>77</td></mdl<>	50	77
Other BNA	100		/0	130		<mdl< td=""><td>30</td><td>46</td><td>230</td><td></td><td>30</td><td>51</td></mdl<>	30	46	230		30	51
Di-N-Butyl Phthalate		<mdl< td=""><td>70</td><td>130</td><td>190</td><td>В</td><td>30</td><td>46</td><td></td><td>AADLO</td><td> 70</td><td></td></mdl<>	70	130	190	В	30	46		AADLO	70	
Benzyl Butyl Phthalate		<mdl< td=""><td>30</td><td>66</td><td>190</td><td><mdl< td=""><td>10</td><td>24</td><td></td><td><mdl,b< td=""><td>30</td><td>51</td></mdl,b<></td></mdl<></td></mdl<>	30	66	190	<mdl< td=""><td>10</td><td>24</td><td></td><td><mdl,b< td=""><td>30</td><td>51</td></mdl,b<></td></mdl<>	10	24		<mdl,b< td=""><td>30</td><td>51</td></mdl,b<>	30	51
Bis(2-Ethylhexyl)Phthalate	1200	<ndl< td=""><td>30</td><td>66</td><td>2800</td><td><wdl< td=""><td>10</td><td>24</td><td>4200</td><td><mdl< td=""><td>10 10</td><td>26</td></mdl<></td></wdl<></td></ndl<>	30	66	2800	<wdl< td=""><td>10</td><td>24</td><td>4200</td><td><mdl< td=""><td>10 10</td><td>26</td></mdl<></td></wdl<>	10	24	4200	<mdl< td=""><td>10 10</td><td>26</td></mdl<>	10 10	26
Dibenzofuran	1200	<mdl< td=""><td>70</td><td>130</td><td>2000</td><td><mdl< td=""><td>30</td><td>46</td><td>4200</td><td><mdl< td=""><td>30</td><td>26</td></mdl<></td></mdl<></td></mdl<>	70	130	2000	<mdl< td=""><td>30</td><td>46</td><td>4200</td><td><mdl< td=""><td>30</td><td>26</td></mdl<></td></mdl<>	30	46	4200	<mdl< td=""><td>30</td><td>26</td></mdl<>	30	26
Benzoic Acid	390	< IVIDE	200	390		<mdl< td=""><td>70</td><td>140</td><td></td><td><mdl< td=""><td>80</td><td>51 150</td></mdl<></td></mdl<>	70	140		<mdl< td=""><td>80</td><td>51 150</td></mdl<>	80	51 150
4-Methylphenol	370	<mdl< td=""><td>70</td><td>130</td><td></td><td><mdl< td=""><td>30</td><td>46</td><td></td><td><mdl< td=""><td>30</td><td>51</td></mdl<></td></mdl<></td></mdl<>	70	130		<mdl< td=""><td>30</td><td>46</td><td></td><td><mdl< td=""><td>30</td><td>51</td></mdl<></td></mdl<>	30	46		<mdl< td=""><td>30</td><td>51</td></mdl<>	30	51
Carbazole		CIVIDE		130		CIVIDE		40	69	- < IVIDL	30	51
Coprostanol						•			0,5	<mdl< td=""><td>80</td><td>150</td></mdl<>	80	150
PCBs (µg/kg dry weight)										CIVIDE	- 00	130
Aroclor 1254		<mdl< td=""><td>60</td><td>110</td><td>2100</td><td></td><td>100</td><td>240</td><td>260</td><td></td><td>30</td><td>51</td></mdl<>	60	110	2100		100	240	260		30	51
Aroclor 1234		<mdl< td=""><td>60</td><td>110</td><td>1300</td><td></td><td>100</td><td>240</td><td>850</td><td></td><td>30</td><td>51</td></mdl<>	60	110	1300		100	240	850		30	51
Aroclor 1260		<mdl< td=""><td>60</td><td>110</td><td>1500</td><td></td><td>100</td><td>240</td><td>290</td><td></td><td>30</td><td>51</td></mdl<>	60	110	1500		100	240	290		30	51
Volatiles (µg/kg dry weight)	`	\IVIDE	- 00	110	1300		100	270	270			
2-Butanone (MEK)	<u> </u>	<mdl< td=""><td>80</td><td>130</td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td></td></mdl<>	80	130				T				
Acetone	710	111101	80	130				_			•••	
Metals (mg/kg dry weight)												
Mercury	0.39				1.3				1			
Aluminum	19000	В			17000				17000	В		
Antimony	1.8					<mdl,g< td=""><td>6</td><td></td><td>3.1</td><td>E,G</td><td></td><td></td></mdl,g<>	6		3.1	E,G		
Arsenic	18	G			14				12			
Barium	71	В			110				95			
Beryllium	0.26				0.42				0.35			
Cadmium	0.79	L	-		1.4				2.5	L		
Chromium	58				60	E			51		_	
Copper	55				71	В			80	В	-	-
Iron	24000	В			28000				20000	В		
Lead	82				150				150	E,B		
Nickel	55				51				49			
Selenium	1.6					<mdl< td=""><td>7</td><td></td><td></td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	7			<mdl< td=""><td>2</td><td></td></mdl<>	2	
Silver	2.6				12				7.2			-
Thallium		<mdl,e< td=""><td>2</td><td></td><td>28</td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td></mdl,e<>	2		28				15			
Zinc	110				190	В			250	В		

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E.

< RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

 $[\]boldsymbol{B}$ - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

Sample Locator		1990 LTI			anic C	1991 LTE				_		
Date Sampled	 	May 30,		-						1992 LTE		
Sample Number	 	90004				May 30, 910123			 -	May 19,		
% Solids:		80			 	85				920120	<i>7</i> 6	
% TOC		4.1	 -			0.18				75 1.1		
BNA Organics (µg/kg dry)	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL
LPAHs					Value	Quui	WIDE	NDL	value	Quai	MDL	KUL
Naphthalene		<mdl< td=""><td>50</td><td>89</td><td></td><td><mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	50	89		<mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<>	40	59		<mdl< td=""><td>40</td><td>67</td></mdl<>	40	67
Acenaphthene		<mdl< td=""><td>10</td><td>24</td><td></td><td><mdl< td=""><td>8</td><td>15</td><td></td><td><mdl< td=""><td>9</td><td>17</td></mdl<></td></mdl<></td></mdl<>	10	24		<mdl< td=""><td>8</td><td>15</td><td></td><td><mdl< td=""><td>9</td><td>17</td></mdl<></td></mdl<>	8	15		<mdl< td=""><td>9</td><td>17</td></mdl<>	9	17
Acenaphthylene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Phenanthrene		<mdl< td=""><td>20</td><td>30</td><td>48</td><td></td><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	20	30	48		10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Fluorene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Anthracene		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
HPAHs					_							
Fluoranthene	40		20	36	51		10	24		<mdl< td=""><td>10</td><td>27</td></mdl<>	10	27
Pyrene	33		20	30	35		10	20	_	<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Benzo(a)anthracene		<mdl< td=""><td>20</td><td>30</td><td>24</td><td></td><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	20	30	24		10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Chrysene		<mdl< td=""><td>20</td><td>30</td><td>24</td><td></td><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	20	30	24		10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Benzo(b)fluoranthene		<mdl< td=""><td>50</td><td>89</td><td></td><td><mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	50	89		<mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<>	40	59		<mdl< td=""><td>40</td><td>67</td></mdl<>	40	67
Benzo(k)fluoranthene		_ <mdl< td=""><td>_50</td><td>89</td><td></td><td><mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	_50	89		<mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<>	40	59		<mdl< td=""><td>40</td><td>67</td></mdl<>	40	67
Benzo(a)pyrene		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	20	39		<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Indeno(1,2,3-Cd)Pyrene		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	20	39		<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Dibenzo(a,h)anthracene		<mdl< td=""><td>50</td><td>89</td><td></td><td><mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<></td></mdl<>	50	89		<mdl< td=""><td>40</td><td>59</td><td></td><td><mdl< td=""><td>40</td><td>67</td></mdl<></td></mdl<>	40	59		<mdl< td=""><td>40</td><td>67</td></mdl<>	40	67
Benzo(g,h,i)perylene		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	20	39		<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Other BNA												
Di-N-Butyl Phthalate		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl,b< td=""><td>20</td><td>39</td><td></td><td><mdl,b< td=""><td>30</td><td>44</td></mdl,b<></td></mdl,b<></td></mdl<>	30	60		<mdl,b< td=""><td>20</td><td>39</td><td></td><td><mdl,b< td=""><td>30</td><td>44</td></mdl,b<></td></mdl,b<>	20	39		<mdl,b< td=""><td>30</td><td>44</td></mdl,b<>	30	44
Benzyl Butyl Phthalate		<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Bis(2-Ethylhexyl)Phthalate	·	<mdl< td=""><td>20</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<></td></mdl<>	20	30		<mdl< td=""><td>10</td><td>20</td><td></td><td><mdl< td=""><td>10</td><td>23</td></mdl<></td></mdl<>	10	20		<mdl< td=""><td>10</td><td>23</td></mdl<>	10	23
Dibenzofuran Benzaia Asid		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td> 44</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>39</td><td></td><td><mdl< td=""><td>30</td><td> 44</td></mdl<></td></mdl<>	20	39		<mdl< td=""><td>30</td><td> 44</td></mdl<>	30	44
Benzoic Acid		<mdl< td=""><td>90</td><td>180</td><td></td><td><mdl< td=""><td>60</td><td>120</td><td></td><td>_<mdl< td=""><td>70</td><td>130</td></mdl<></td></mdl<></td></mdl<>	90	180		<mdl< td=""><td>60</td><td>120</td><td></td><td>_<mdl< td=""><td>70</td><td>130</td></mdl<></td></mdl<>	60	120		_ <mdl< td=""><td>70</td><td>130</td></mdl<>	70	130
4-Methylphenol Carbazole		<mdl< td=""><td>30</td><td>60</td><td></td><td><mdl< td=""><td>20</td><td>39</td><td></td><td>_<mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<></td></mdl<>	30	60		<mdl< td=""><td>20</td><td>39</td><td></td><td>_<mdl< td=""><td>30</td><td>44</td></mdl<></td></mdl<>	20	39		_ <mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
Coprostanol										<mdl< td=""><td>30</td><td>44</td></mdl<>	30	44
PCBs (µg/kg dry weight)										<mdl< td=""><td>70</td><td>130</td></mdl<>	70	130
Aroclor 1254		<mdl< td=""><td>20</td><td>31</td><td></td><td>-3.4D1</td><td> 10</td><td>20</td><td></td><td>1451</td><td></td><td></td></mdl<>	20	31		-3.4D1	10	20		1451		
Aroclor 1248		<mdl< td=""><td>20</td><td>31</td><td></td><td><mdl <mdl< td=""><td>10 10</td><td>20 20</td><td></td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></mdl </td></mdl<>	20	31		<mdl <mdl< td=""><td>10 10</td><td>20 20</td><td></td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></mdl 	10 10	20 20		<mdl< td=""><td>20</td><td>44</td></mdl<>	20	44
Aroclor 1240 Aroclor 1260		<mdl< td=""><td>20</td><td>31</td><td></td><td><mdl< td=""><td>10</td><td>20</td><td>··</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<></td></mdl<>	20	31		<mdl< td=""><td>10</td><td>20</td><td>··</td><td><mdl< td=""><td>20</td><td>44</td></mdl<></td></mdl<>	10	20	··	<mdl< td=""><td>20</td><td>44</td></mdl<>	20	44
Volatiles (μg/kg dry weight)	\ \	CIVIDE	20	ا (< IVIDE	10	20		<mdl< td=""><td>20</td><td>44</td></mdl<>	20	44
2-Butanone (MEK)	,											
Acetone												
Metals (mg/kg dry weight)								i				
Mercury	0.025		_		0.024					<mdl< td=""><td>0.03</td><td></td></mdl<>	0.03	
Aluminum	10000	В			9300				10000	B	0.03	
Antimony		<mdl< td=""><td>0.8</td><td></td><td>7500</td><td><mdl,g< td=""><td>4</td><td></td><td>1.3</td><td>E,G</td><td></td><td></td></mdl,g<></td></mdl<>	0.8		7500	<mdl,g< td=""><td>4</td><td></td><td>1.3</td><td>E,G</td><td></td><td></td></mdl,g<>	4		1.3	E,G		
Arsenic	3.8	G		_	9.4		•		3			-
Barium	33	В			36			- 1	45			
Beryllium	0.13				0.24		,		0.28			
Cadmium		<mdl,l< td=""><td>0.3</td><td></td><td></td><td><mdl< td=""><td>0.2</td><td></td><td>0.13</td><td>L</td><td></td><td></td></mdl<></td></mdl,l<>	0.3			<mdl< td=""><td>0.2</td><td></td><td>0.13</td><td>L</td><td></td><td></td></mdl<>	0.2		0.13	L		
Chromium	14				13	Е			12			
Copper	11				11	В	-		13	В		
Iron	18000	В			20000				17000	В		
Lead	5				5.9				8.4	E,B		
Nickel	12				12				12		•	
Selenium		<mdl< td=""><td>0.8</td><td></td><td></td><td><mdl< td=""><td>6</td><td></td><td></td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	0.8			<mdl< td=""><td>6</td><td></td><td></td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<>	6			<mdl< td=""><td>3</td><td></td></mdl<>	3	
Silver		<mdl< td=""><td>0.4</td><td></td><td></td><td><mdl< td=""><td>0.4</td><td></td><td>0.27</td><td></td><td></td><td></td></mdl<></td></mdl<>	0.4			<mdl< td=""><td>0.4</td><td></td><td>0.27</td><td></td><td></td><td></td></mdl<>	0.4		0.27			
Thallium		<mdl,e< td=""><td>1</td><td></td><td></td><td><mdl< td=""><td>20</td><td></td><td>12</td><td></td><td></td><td></td></mdl<></td></mdl,e<>	1			<mdl< td=""><td>20</td><td></td><td>12</td><td></td><td></td><td></td></mdl<>	20		12			
Zinc	46				47	В			49	В		

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E.

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

TABLE 4-6. Core		1990 L		-		1990 L				1990 L	-	
Date Sampled	F 2	May 30,		-		May 30,			F4	May 30,		•
Sample Number		900043				90004				90004		
% Solids:		76			-	67				79	**	
% TOC		0.17				2.7				0.15		
BNA Organics (μg/kg dry)	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL	Value	Qual	MDL	RDL
LPAHs			•									
Naphthalene		<mdl< td=""><td>50</td><td>93</td><td></td><td><mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>50</td><td>95</td></mdl<></td></mdl<></td></mdl<>	50	93		<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>50</td><td>95</td></mdl<></td></mdl<>	60	110		<mdl< td=""><td>50</td><td>95</td></mdl<>	50	95
Acenaphthene		<mdl< td=""><td>10</td><td>25</td><td></td><td><mdl< td=""><td>10</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>25</td></mdl<></td></mdl<></td></mdl<>	10	25		<mdl< td=""><td>10</td><td>30</td><td></td><td><mdl< td=""><td>10</td><td>25</td></mdl<></td></mdl<>	10	30		<mdl< td=""><td>10</td><td>25</td></mdl<>	10	25
Acenaphthylene		<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<></td></mdl<>	20	32		<mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Phenanthrene		<mdl< td=""><td>20</td><td>32</td><td>450</td><td></td><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	32	450		20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Fluorene		<mdl< td=""><td>20</td><td>32</td><td>48</td><td></td><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	32	48		20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Anthracene		<mdl< td=""><td>20</td><td>32</td><td>63</td><td></td><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	32	63		20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
HPAHs		<mdl< td=""><td>20</td><td>38</td><td>720</td><td></td><td>20</td><td>AE</td><td></td><td>AADI</td><td>20</td><td>20</td></mdl<>	20	38	720		20	AE		AADI	20	20
Fluoranthene Pyrene		<mdl< td=""><td>20</td><td>38</td><td>720 430</td><td></td><td>20 20</td><td>45 37</td><td></td><td><mdl <mdl< td=""><td>20 20</td><td>38 32</td></mdl<></mdl </td></mdl<>	20	38	720 430		20 20	45 37		<mdl <mdl< td=""><td>20 20</td><td>38 32</td></mdl<></mdl 	20 20	38 32
Benzo(a)anthracene		<mdl< td=""><td>20</td><td>32</td><td>220</td><td></td><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	32	220		20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Chrysene		<mdl< td=""><td>20</td><td>32</td><td>370</td><td></td><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	32	370		20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Benzo(b)fluoranthene		<mdl< td=""><td>50</td><td>93</td><td>390</td><td></td><td>60</td><td>110</td><td></td><td><mdl< td=""><td>50</td><td>95</td></mdl<></td></mdl<>	50	93	390		60	110		<mdl< td=""><td>50</td><td>95</td></mdl<>	50	95
Benzo(k)fluoranthene		<mdl< td=""><td>50</td><td>93</td><td>340</td><td></td><td>60</td><td>110</td><td></td><td><mdl< td=""><td>50</td><td>95</td></mdl<></td></mdl<>	50	93	340		60	110		<mdl< td=""><td>50</td><td>95</td></mdl<>	50	95
Benzo(a)pyrene		<mdl< td=""><td>30</td><td>63</td><td>280</td><td></td><td>40</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>63</td></mdl<></td></mdl<>	30	63	280		40	75		<mdl< td=""><td>30</td><td>63</td></mdl<>	30	63
Indeno(1,2,3-Cd)Pyrene	•	<mdl< td=""><td>30</td><td>63</td><td>130</td><td></td><td>40</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>63</td></mdl<></td></mdl<>	30	63	130		40	75		<mdl< td=""><td>30</td><td>63</td></mdl<>	30	63
Dibenzo(a,h)anthracene		<mdl< td=""><td>50</td><td>93</td><td></td><td><mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>50</td><td>95</td></mdl<></td></mdl<></td></mdl<>	50	93		<mdl< td=""><td>60</td><td>110</td><td></td><td><mdl< td=""><td>50</td><td>95</td></mdl<></td></mdl<>	60	110		<mdl< td=""><td>50</td><td>95</td></mdl<>	50	95
Benzo(g,h,i)perylene		<mdl< td=""><td>30</td><td>63</td><td>110</td><td></td><td>40</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>63</td></mdl<></td></mdl<>	30	63	110		40	75		<mdl< td=""><td>30</td><td>63</td></mdl<>	30	63
Other BNA												
Di-N-Butyl Phthalate		<mdl< td=""><td>30</td><td>_ 63</td><td></td><td><mdl< td=""><td>40</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>63</td></mdl<></td></mdl<></td></mdl<>	30	_ 63		<mdl< td=""><td>40</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>63</td></mdl<></td></mdl<>	40	75		<mdl< td=""><td>30</td><td>63</td></mdl<>	30	63
Benzyl Butyl Phthalate		<mdl< td=""><td>20</td><td>32</td><td></td><td><mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<></td></mdl<>	20	32		<mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Bis(2-Ethylhexyl)Phthalate		<mdl< td=""><td>20</td><td>32</td><td>870</td><td>1.451</td><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	32	870	1.451	20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Dibenzofuran		<mdl< td=""><td>30</td><td>63</td><td>400</td><td><mdl< td=""><td>40</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>63</td></mdl<></td></mdl<></td></mdl<>	30	63	400	<mdl< td=""><td>40</td><td>75</td><td></td><td><mdl< td=""><td>30</td><td>63</td></mdl<></td></mdl<>	40	75		<mdl< td=""><td>30</td><td>63</td></mdl<>	30	63
Benzoic Acid 4-Methylphenol		<mdl< td=""><td>90[°]</td><td>180</td><td>400 79</td><td></td><td>100 40</td><td>220 75</td><td></td><td><mdl< td=""><td>90 30</td><td>190</td></mdl<></td></mdl<>	90 [°]	180	400 79		100 40	220 75		<mdl< td=""><td>90 30</td><td>190</td></mdl<>	90 30	190
Carbazole		< IVIDE	30	63			40	/3		<mdl< td=""><td>30</td><td>63</td></mdl<>	30	63
Coprostanol	-	-										
PCBs (µg/kg dry weight)			-	1								
Aroclor 1254		<mdl< td=""><td>20</td><td>33</td><td></td><td><mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<></td></mdl<>	20	33		<mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Aroclor 1248		<mdl< td=""><td>20</td><td>33</td><td></td><td><mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<></td></mdl<>	20	33		<mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Aroclor 1260	•	<mdl< td=""><td>20</td><td>33</td><td></td><td><mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<></td></mdl<>	20	33		<mdl< td=""><td>20</td><td>37</td><td></td><td><mdl< td=""><td>20</td><td>32</td></mdl<></td></mdl<>	20	37		<mdl< td=""><td>20</td><td>32</td></mdl<>	20	32
Volatiles (µg/kg dry weight)											
2-Butanone (MEK)												
Acetone				i								
Metals (mg/kg dry weight)	0.007								0.005			
Mercury	0.026				0.1				0.025			
Aluminum	12000	B		-	16000	B			11000	B		
Antimony	2.6	<mdl G</mdl 	<u>_</u>		4.5	<mdl< td=""><td></td><td></td><td>2.5</td><td><mdl< td=""><td>0.9</td><td></td></mdl<></td></mdl<>			2.5	<mdl< td=""><td>0.9</td><td></td></mdl<>	0.9	
Arsenic Barium	2.6 32	В			4.5 54	G B		-	38	G B		
Beryllium	0.13	В			0.3	- 0			0.13			
Cadmium	0.13	<mdl,l< td=""><td>0.3</td><td></td><td>0.3</td><td>L</td><td></td><td>- 1</td><td>0.13</td><td><mdl,l< td=""><td>0.3</td><td></td></mdl,l<></td></mdl,l<>	0.3		0.3	L		- 1	0.13	<mdl,l< td=""><td>0.3</td><td></td></mdl,l<>	0.3	
Chromium	14	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.5		24				16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Copper	12				22				10			
Iron	20000	В			24000	В			19000	В		
Lead	6.6	~- 			15				5.1			
Nickel	14				18		-		14			
Selenium		<mdl< td=""><td>0.8</td><td></td><td>0.9</td><td></td><td></td><td></td><td></td><td><mdl< td=""><td>0.8</td><td>•</td></mdl<></td></mdl<>	0.8		0.9					<mdl< td=""><td>0.8</td><td>•</td></mdl<>	0.8	•
Silver		<mdl< td=""><td>0.4</td><td></td><td>0.45</td><td></td><td></td><td></td><td></td><td><mdl< td=""><td>0.4</td><td></td></mdl<></td></mdl<>	0.4		0.45					<mdl< td=""><td>0.4</td><td></td></mdl<>	0.4	
Thallium		<mdl,e< td=""><td>1</td><td></td><td></td><td>AMDLE</td><td>1</td><td></td><td></td><td>-MADI E</td><td>1</td><td></td></mdl,e<>	1			AMDLE	1			-MADI E	1	
IIIaliiuiii	54	CIVIDE, E			75	<mdl,e< td=""><td></td><td></td><td>51</td><td><mdl,e< td=""><td></td><td></td></mdl,e<></td></mdl,e<>			51	<mdl,e< td=""><td></td><td></td></mdl,e<>		

In 1990 antimony, arsenic, selenium, and thallium were analyzed using GFAA methods. See Appendix E.

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

B - Blank contamination

G - Low standard reference material recovery

L - High standard reference material recovery

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

TABLE 4-7.	Below	Cap ar	nd Secti	ons N	1 and N			
Section/Locator	N Below Ca	p LTBD24	N1	LTBD24	N2	LTBD24		
Date Sampled	May 1		May 1			14, 90	Marine	Sediment
Sample Number	9000		9000	433		0434		dards
% Solids	69		8			9	Jean	T T
% TOC	2.4	4	1.			15	sqs	CSL
Parameters	Value	Qual	Value	Qual	Value	Qual	Table I	Table III
LPAHs mg/Kg OC								
Naphthalene	3	<mdl< td=""><td>4</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></td></mdl<>	4	<mdl< td=""><td>30</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	30	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthene	4.6		0.7	<mdl< td=""><td>7</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	7	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57
Acenaphthylene	2.3		1	<mdl< td=""><td>10</td><td><mdl< td=""><td>66</td><td>66</td></mdl<></td></mdl<>	10	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66
Phenanthrene	31		3.1		10	<mdl< td=""><td>100</td><td>480</td></mdl<>	100	480
Fluorene	4.6		1	<mdl< td=""><td>10</td><td>_<mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<>	10	_ <mdl< td=""><td>23</td><td>79</td></mdl<>	23	79
Anthracene	13		1	<mdl< td=""><td>10</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></mdl<>	10	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene	3	<mdl< td=""><td>4</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<></td></mdl<>	4	<mdl< td=""><td>30</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	30	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
Total LPAHs	61.5		14.8		107		370	780
HPAHs mg/Kg OC	- FA						27.2	,
Fluoranthene	58		1	<mdl< td=""><td>10</td><td><mdl< td=""><td>160</td><td>1,200</td></mdl<></td></mdl<>	10	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200
Pyrene	50	-	1	<mdl< td=""><td>10</td><td><mdl< td=""><td>1,000</td><td>1,400</td></mdl<></td></mdl<>	10	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400
Benzo(a)anthracene	25		1	<mdl< td=""><td>10</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	10	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Chrysene	41		1	<mdl< td=""><td>10</td><td><mdl< td=""><td>110</td><td>460</td></mdl<></td></mdl<>	10	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
Total benzofluoranthenes	92		7.2	NAPA.	66		230	450
Benzo(a)pyrene	35		2	<mdl< td=""><td>20</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></mdl<>	20	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene Dibenzo(a,h)anthracene	9.2	<mdl< td=""><td>4</td><td><mdl< td=""><td>20 30</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<></td></mdl<>	4	<mdl< td=""><td>20 30</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	20 30	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Benzo(g,h,i)perylene	6.7	<nidl< td=""><td>2</td><td><mdl <mdl< td=""><td>20</td><td><mdl <mdl< td=""><td>12 31</td><td>33</td></mdl<></mdl </td></mdl<></mdl </td></nidl<>	2	<mdl <mdl< td=""><td>20</td><td><mdl <mdl< td=""><td>12 31</td><td>33</td></mdl<></mdl </td></mdl<></mdl 	20	<mdl <mdl< td=""><td>12 31</td><td>33</td></mdl<></mdl 	12 31	33
Total HPAHs	319.9	-	21.2	< IVI D L	196	< NIDL	960	78 5,300
mg/Kg OC	319.9		21.2		170		900	3,300
1,2-Dichlorobenzene	0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>10</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	10	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene	0.8	<mdl< td=""><td></td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<></td></mdl<>		<mdl< td=""><td>10</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	10	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9
1,2,4-Trichlorobenzene	0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>10</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	10	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8
Hexachlorobenzene	0.8	<mdl< td=""><td>i</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	i	<mdl< td=""><td>10</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	10	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	2.0	<mdl< td=""><td>2</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	20	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	0.4	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>6</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>6</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	6	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	2.0	<mdl< td=""><td>2</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<>	20	<mdl< td=""><td>220</td><td>1,700</td></mdl<>	220	1,700
Benzyl Butyl Phthalate	12		1	<mdl< td=""><td>10</td><td></td><td>4.9</td><td>64</td></mdl<>	10		4.9	64
Bis(2-Ethylhexyl)Phthalate	150		1	<mdl< td=""><td>10</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<>	10	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Di-N-Octyl Phthalate	0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>10</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	10	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	2.0	<mdl< td=""><td>2</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	20	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	2.0	<mdl< td=""><td>2</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	20	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine	2.0	<mdl< td=""><td>2</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	20	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	58		NA		40	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg								
Phenol	100	<mdl< td=""><td>90</td><td><mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<></td></mdl<>	90	<mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	90	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	30	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	30	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	30	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Pentachlorophenol	40	<mdl,l< td=""><td>30</td><td><mdl,l< td=""><td>30</td><td><mdl,l< td=""><td>360</td><td>690</td></mdl,l<></td></mdl,l<></td></mdl,l<>	30	<mdl,l< td=""><td>30</td><td><mdl,l< td=""><td>360</td><td>690</td></mdl,l<></td></mdl,l<>	30	<mdl,l< td=""><td>360</td><td>690</td></mdl,l<>	360	690
Benzyl Alcohol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	30	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	350		310		90 -	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Metals mg/kg dry weight	0.00		0.040		0.061	1	0.41	0.50
Mercury Arsenic	0.99 8.7	G	0.049		0.051 5.1	G	0.41	0.59
			6.2	G			57	93
Cadmium Chromium	1.4	L	0.37 15	L	0.3 14	<mdl,l< td=""><td>5.1</td><td>6.7 270</td></mdl,l<>	5.1	6.7 270
	77		12		11	.	260 390	
Copper Lead	160		6.2		6.3		450	390 530
Silve r	6.5		0.49		0.4	<mdl< td=""><td>6.1</td><td>6.1</td></mdl<>	6.1	6.1
Zinc	190	В	49	В	49	B	410	960
NA - Not Available	Exceeds		Exceed		77	ט	710	700

Section/Locator Date Sampled Sample Number % Solids % TOC Parameters	N3 L May 14 90004 73	TBD24 4, 90 435	May 14	TBD24	1 N4	
Date Sampled Sample Number % Solids % TOC Parameters	May 14 90004 73 1.1	1, 90 135	May 14			
Sample Number % Solids % TOC Parameters	90004 73 1.1	435				
% Solids % TOC Parameters	73 1.1					ediment
% TOC Parameters	1.1		9000 ² 71	136	Stanc	dards
Parameters			2.5		sqs	CSL
	Value	Qual	Value	Qual	Table 1	Table III
LPAHs mg/Kg OC			1,000			
Naphthalene	5	<mdl< td=""><td>2</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	2	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthene	0.9	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57
Acenaphthylene	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>66</td><td>66</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66
Phenanthrene	5.3		0.8	<mdl< td=""><td>100</td><td>480</td></mdl<>	100	480
Fluorene	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79
Anthracene	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene	5 22.2	<mdl< td=""><td>2</td><td><mdl< td=""><td>38 370</td><td>64 780</td></mdl<></td></mdl<>	2	<mdl< td=""><td>38 370</td><td>64 780</td></mdl<>	38 370	64 780
Total LPAHs HPAHs mg/Kg OC	22.2		7.6		3/0	/80
Fluoranthene	6.7		1.8	1	160	1,200
Pyrene	6		1.8		1,000	1,400
Benzo(a)anthracene	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Chrysene	3.8	3,7,00	0.8	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
Total benzofluoranthenes	9		4		230	450
Benzo(a)pyrene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></mdl<>	2	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	2	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Dibenzo(a,h)anthracene	5	<mdl< td=""><td>2</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	2	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>31</td><td>78</td></mdl<></td></mdl<>	2	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
Total HPAHs	41.5		17.2		960	5,300
mg/Kg OC						
1,2-Dichlorobenzene	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	2	<mdl <mdl< td=""><td>0.8</td><td><mdl< td=""><td>3.1 0.81</td><td>9 1,8</td></mdl<></td></mdl<></mdl 	0.8	<mdl< td=""><td>3.1 0.81</td><td>9 1,8</td></mdl<>	3.1 0.81	9 1,8
	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	2	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	0.9	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<>	2	<mdl< td=""><td>220</td><td>1,700</td></mdl<>	220	1,700
Benzyl Butyl Phthalate	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Bis(2-Ethylhexyl)Phthalate	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Di-N-Octyl Phthalate	2	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	2	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	2	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	2	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	5	<mdl< td=""><td>2</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	2	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg	100	AIDI	100	MDI	420	1 200
Phenol 2-Methylphenol	100 30	<mdl <mdl< td=""><td>100 40</td><td><mdl <mdl< td=""><td>420 63</td><td>1,200 63</td></mdl<></mdl </td></mdl<></mdl 	100 40	<mdl <mdl< td=""><td>420 63</td><td>1,200 63</td></mdl<></mdl 	420 63	1,200 63
4-Methylphenol	100	CIVIDE	40	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	30	<mdl< td=""><td>40</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	40	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Pentachlorophenol	30	<mdl,l< td=""><td>40</td><td><mdl,l< td=""><td>360</td><td>690</td></mdl,l<></td></mdl,l<>	40	<mdl,l< td=""><td>360</td><td>690</td></mdl,l<>	360	690
Benzyl Alcohol	30	<mdl,c< td=""><td>40</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl,c<>	40	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	270		280		650	650
Metals mg/kg dry weight	-					——————————————————————————————————————
Mercury	0.055		0.056		0.41	0.59
Arsenic	5.5	G	5.6	G	57	93
Cadmium	0.27	Ļ	0.28	L	5.1	6.7
Chromium	13		14		260	270
Copper	12		15		390	390
Lead	6.8	.1451	9.9	.1451	450	530
Silver	0.4 51	<mdl< td=""><td>0.4 55</td><td><mdl B</mdl </td><td>6.1 410</td><td>6.1 960</td></mdl<>	0.4 55	<mdl B</mdl 	6.1 410	6.1 960
Zinc	Exceeds	B		CSL	410	700

TABLE 4-8	. O Core	: 1990	Compa	arison t	o Sedin	nent Sta	andards	,
	Belov	v Cap a	ınd Sec	tions O	1 and 0) 2		
Section/Locator	O Below Ca			LTBC35		LTBC35		
Date Sampled	May 1			14, 90		14, 90	Marine	Sediment
Sample Number	9000			0428		0429	Stan	dards
% Solids	60			33		3		
% TOC	2.			0.1		08	_sqs	CSL
Parameters LPAHs mg/Kg OC	Value	Qual	Value	Qual	Value	Qual	Table I	Table III
Naphthalene	4	<mdl< td=""><td></td><td>3451</td><td></td><td>MADI</td><td></td><td>1</td></mdl<>		3451		MADI		1
Acenaphthene	5.4	<ndl< td=""><td>50 10</td><td><mdl <mdl< td=""><td>10</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></mdl </td></ndl<>	50 10	<mdl <mdl< td=""><td>10</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></mdl 	10	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthylene	5		20	<mdl< td=""><td>30</td><td><mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl </td></mdl<>	30	<mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl 	16 66	57
Phenanthrene	64		20	<mdl< td=""><td>30</td><td><mdl< td=""><td>100</td><td>66</td></mdl<></td></mdl<>	30	<mdl< td=""><td>100</td><td>66</td></mdl<>	100	66
Fluorene	8.2		20	<mdl< td=""><td>30</td><td><mdl< td=""><td>23</td><td>480 79</td></mdl<></td></mdl<>	30	<mdl< td=""><td>23</td><td>480 79</td></mdl<>	23	480 79
Anthracene	43		20	<mdl< td=""><td>30</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></mdl<>	30	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene	4	<mdl< td=""><td>50</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<></td></mdl<>	50	<mdl< td=""><td>60</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	60	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
Total LPAHs	133.6	,,,,,	190	(WIDE	250	(WIDE	370	780
HPAHs mg/Kg OC							370	/ 00
Fluoranthene	190		20	<mdl< td=""><td>30</td><td><mdl< td=""><td>160</td><td>1,200</td></mdl<></td></mdl<>	30	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200
Pyrene	210		20	<mdl< td=""><td>30</td><td><mdl< td=""><td>1,000</td><td>1,400</td></mdl<></td></mdl<>	30	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400
Benzo(a)anthracene	100		20	<mdl< td=""><td>30</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	30	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Chrysene	140	· · · · · ·	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>110</td><td>460</td></mdl<></td></mdl<>	30	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
Total benzofluoranthenes	250		100		126		230	450
Benzo(a)pyrene	96		30	<mdl< td=""><td>40</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></mdl<>	40	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene	25		30	<mdl< td=""><td>40</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	40	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Dibenzo(a,h)anthracene	4	<mdl< td=""><td>50</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<></td></mdl<>	50	<mdl< td=""><td>60</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	60	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene	19		30	<mdl< td=""><td>40</td><td><mdl< td=""><td>31</td><td>78</td></mdl<></td></mdl<>	40	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
Total HPAHs	1034		320		426		960	5,300
mg/Kg OC								
1,2-Dichlorobenzene	1	<mdl< td=""><td>20</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	30	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene	1	<mdl< td=""><td>20</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	30	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9
1,2,4-Trichlorobenzene	1	<mdl< td=""><td>20</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	30	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8
Hexachlorobenzene	3	<mdl< td=""><td>20</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	30	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	3	<mdl< td=""><td>30</td><td><mdl< td=""><td>40</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>40</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	40	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	1	<mdl< td=""><td>9</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<></td></mdl<>	9	<mdl< td=""><td>10</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	10	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate Benzyl Butyl Phthalate	30	<mdl< td=""><td>30 20</td><td><mdl< td=""><td>40</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<></td></mdl<>	30 20	<mdl< td=""><td>40</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<>	40	<mdl< td=""><td>220</td><td>1,700</td></mdl<>	220	1,700
Bis(2-Ethylhexyl)Phthalate	390	-	20	<mdl< td=""><td>30</td><td></td><td>4.9</td><td>64</td></mdl<>	30		4.9	64
Di-N-Octyl Phthalate	390	<mdl< td=""><td>200</td><td><mdl <mdl< td=""><td>30 300</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<></mdl </td></mdl<>	200	<mdl <mdl< td=""><td>30 300</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<></mdl 	30 300	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Dibenzofuran	3	<mdl< td=""><td>30</td><td><mdl< td=""><td>40</td><td><mdl <mdl< td=""><td>58 15</td><td>4,500 58</td></mdl<></mdl </td></mdl<></td></mdl<>	30	<mdl< td=""><td>40</td><td><mdl <mdl< td=""><td>58 15</td><td>4,500 58</td></mdl<></mdl </td></mdl<>	40	<mdl <mdl< td=""><td>58 15</td><td>4,500 58</td></mdl<></mdl 	58 15	4,500 58
Hexachlorobutadiene	3	<mdl< td=""><td>30</td><td><mdl< td=""><td>40</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>40</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	40	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine	3	<mdl< td=""><td>30</td><td><mdl< td=""><td>40</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>40</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	40	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	46	NIND L	50	<mdl< td=""><td>60</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	60	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg	1			· CIVIDE		NAIDE .	12	
Phenol	300	<mdl< td=""><td>90</td><td><mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<></td></mdl<>	90	<mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	90	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	80	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	30	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	80	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	30	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	80	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	30	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Pentachlorophenol	80	<mdl,l< td=""><td>30</td><td><mdl,l< td=""><td>30</td><td><mdl,l< td=""><td>360</td><td>690</td></mdl,l<></td></mdl,l<></td></mdl,l<>	30	<mdl,l< td=""><td>30</td><td><mdl,l< td=""><td>360</td><td>690</td></mdl,l<></td></mdl,l<>	30	<mdl,l< td=""><td>360</td><td>690</td></mdl,l<>	360	690
Benzyl Alcohol	80	<mdl< td=""><td>30</td><td><mdĺ< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdĺ<></td></mdl<>	30	<mdĺ< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdĺ<>	30	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	1100		90	<mdl< td=""><td>90</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	90	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Metals mg/kg dry weight								
Mercury	1.8		0.036		0.024		0.41	0.59
Arsenic	13	G	4.8	G	4.8	G	57	93
Cadmium	4.8	L	0.2	<mdl,l< td=""><td>0.24</td><td>L</td><td>5.1</td><td>6.7</td></mdl,l<>	0.24	L	5.1	6.7
Chromium	55		10		14		260	270
Copper	160		12		10		390	390
Lead	480		11		4.8		450	530
Silver	17		0.4	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>6.1</td><td>6.1</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>6.1</td><td>6.1</td></mdl<>	6.1	6.1
Zinc	320 Exceed	В	48	B ds CSL	47	В	410	960

Sedin	nent Stan	dards.	Sectio	ns O3 a	nd 04		
Section/Locator		.TBC35	04	LTBC35			
Date Sampled	May 1			14, 90	Marine Sediment Standards		
Sample Number	9000			0431			
% Solids	82	?	8	0			
% TOC	0.6			1	sQs	CSL	
Parameters	Value	Qual	Value	Qual	Table I	Table III	
LPAHs mg/Kg OC							
Naphthalene	8 2	<mdl< td=""><td>5 1</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	5 1	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170	
Acenaphthene Acenaphthylene	3	<mdl <mdl< td=""><td>2</td><td><mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl </td></mdl<></mdl 	2	<mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl 	16 66	57	
Phenanthrene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>100</td><td>66 480</td></mdl<></td></mdl<>	2	<mdl< td=""><td>100</td><td>66 480</td></mdl<>	100	66 480	
Fluorene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<>	2	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79	
Anthracene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></mdl<>	2	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200	
2-Methylnaphthalene	8	<mdl< td=""><td>5</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	5	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64	
Total LPAHs	30		19		370	780	
HPAHs mg/Kg OC							
Fluoranthene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>160</td><td>1,200</td></mdl<></td></mdl<>	2	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200	
Pyrene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>1,000</td><td>1,400</td></mdl<></td></mdl<>	2	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400	
Benzo(a)anthracene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	2	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270	
Chrysene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>110</td><td>460</td></mdl<></td></mdl<>	2	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460	
Total benzofluoranthenes	15.8		10		230	450	
Benzo(a)pyrene	5	<mdl< td=""><td>3</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></mdl<>	3	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210	
Indeno(1,2,3-Cd)Pyrene	500	<mdl< td=""><td>3</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	3	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88	
Dibenzo(a,h)anthracene	5	<mdl <mdl< td=""><td>5 3</td><td><mdl <mdl< td=""><td>12 31</td><td>33</td></mdl<></mdl </td></mdl<></mdl 	5 3	<mdl <mdl< td=""><td>12 31</td><td>33</td></mdl<></mdl 	12 31	33	
Benzo(g,h,i)perylene Total HPAHs	542.8	<nidl< td=""><td>32</td><td><nidl< td=""><td>960</td><td>78 5,300</td></nidl<></td></nidl<>	32	<nidl< td=""><td>960</td><td>78 5,300</td></nidl<>	960	78 5,300	
mg/Kg OC	342.0		J2.			3,300	
1,2-Dichlorobenzene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	2	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3	
1,4-Dichlorobenzene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	2	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9	
1,2,4-Trichlorobenzene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	2	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8	
Hexachlorobenzene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	2	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3	
Diethyl Phthalate	5	<mdl< td=""><td>3</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	3	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110	
Dimethyl Phthalate	1	<mdl< td=""><td>0.9</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.9	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53	
Di-N-Butyl Phthalate	5	<mdl< td=""><td>3</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<>	3	<mdl< td=""><td>220</td><td>1,700</td></mdl<>	220	1,700	
Benzyl Butyl Phthalate	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	2	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64	
Bis(2-Ethylhexyl)Phthalate	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<>	2	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78	
Di-N-Octyl Phthalate	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	2	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500	
Dibenzofuran Hexachlorobutadiene	5 5	<mdl <mdl< td=""><td>3</td><td><mdl <mdl< td=""><td>15 3.9</td><td>58 6.2</td></mdl<></mdl </td></mdl<></mdl 	3	<mdl <mdl< td=""><td>15 3.9</td><td>58 6.2</td></mdl<></mdl 	15 3.9	58 6.2	
N-Nitrosodiphenylamine	5	<mdl< td=""><td>3</td><td><mdl< td=""><td>3.9 11</td><td>11</td></mdl<></td></mdl<>	3	<mdl< td=""><td>3.9 11</td><td>11</td></mdl<>	3.9 11	11	
Total PCBs	8	<mdl< td=""><td>5</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	5	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65	
Dry weight μg/Kg		(IVIDE		NI DE		05	
Phenol	90	<mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	90	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200	
2-Methylphenol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	30	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63	
4-Methylphenol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	30	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670	
2,4-Dimethylphenol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	30	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29	
Pentachlorophenol	30	<mdl,l< td=""><td>30</td><td><mdl,l< td=""><td>360</td><td>690</td></mdl,l<></td></mdl,l<>	30	<mdl,l< td=""><td>360</td><td>690</td></mdl,l<>	360	690	
Benzyl Alcohol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	30	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73	
Benzoic Acid	90	<mdl< td=""><td>90</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	90	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650	
Metals mg/kg dry weight	0.027		0.14			0.50	
Mercury	0.037		0.14		0.41	0.59	
Arsenic	4.9	G	5	G	57	93	
Cadmium Chromium	0.24 12	L	0.3 12	<mdl,l< td=""><td>5.1 260</td><td>6.7 270</td></mdl,l<>	5.1 260	6.7 270	
	10		11		390	390	
Copper Lead	7.3		6.3	+	450	530	
Silver	0.4	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>6.1</td><td>6.1</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>6.1</td><td>6.1</td></mdl<>	6.1	6.1	
Zinc	55	B	49	B	410	960	
	Exceed		Excee		···•	,,,,	

TABLE 4-9.	P Core:	1990	Comp	arison	to Sed	iment :	Standard	ds,
					P1 and			•
Section/Locator	P Below Ca			LTBC34	P2	LTBC34		
Date Sampled	May 3			30, 90		30, 90	Marine S	Sediment
Sample Number	9000			0438		0439	Stane	dards
% Solids	38			30		76		
% TOC	4.		 	11		17	SQS	CSL
Parameters	Value	Qual	Value	Qual	Value	Qual	Table I	Table III
LPAHs mg/Kg OC Naphthalene	2	<mdl< td=""><td>50</td><td>AADI</td><td></td><td>1451</td><td></td><td></td></mdl<>	50	AADI		1451		
Acenaphthene	0.7	<mdl< td=""><td>50 9</td><td><mdl< td=""><td>30 6</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></td></mdl<>	50 9	<mdl< td=""><td>30 6</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	30 6	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthylene	0.7	<mdl< td=""><td>20</td><td><mdl< td=""><td>10</td><td><mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl </td></mdl<></td></mdl<>	20	<mdl< td=""><td>10</td><td><mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl </td></mdl<>	10	<mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl 	16 66	57
Phenanthrene	13	CIVIDE	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>100</td><td>66 480</td></mdl<></td></mdl<>	10	<mdl< td=""><td>100</td><td>66 480</td></mdl<>	100	66 480
Fluorene	0.7	<mdl< td=""><td>20</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<>	10	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79
Anthracene	3.2	NID L	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></mdl<>	10	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene	2	<mdl< td=""><td>50</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<></td></mdl<>	50	<mdl< td=""><td>30</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	30	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
Total LPAHs	22.3	NID L	189	- CIVIDE	106	CIVIDL	370	780
HPAHs mg/Kg OC					100		3/0_	/00
Fluoranthene	16		36		10	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200
Pyrene	24		30		10	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400
Benzo(a)anthracene	8.3		20	<mdl< td=""><td>10</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	10	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Chrysene	12		20	<mdl< td=""><td>10</td><td><mdl< td=""><td>110</td><td>460</td></mdl<></td></mdl<>	10	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
Total benzofluoranthenes	26		90	111122	58		230	450
Benzo(a)pyrene	11		30	<mdl< td=""><td>20</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></mdl<>	20	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene	5.1	-	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	20	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Dibenzo(a,h)anthracene	2	<mdl< td=""><td>50</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<></td></mdl<>	50	<mdl< td=""><td>30</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	30	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene	4.4		30	* <mdl< td=""><td>20</td><td><mdl< td=""><td>31</td><td>78</td></mdl<></td></mdl<>	20	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
Total HPAHs	108.8		336		188		960	5,300
mg/Kg OC							I	
1,2-Dichlorobenzene	0.7	<mdl< td=""><td>20</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	10	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene	0.7	<mdl,g< td=""><td>20</td><td><mdl,g< td=""><td>10</td><td><mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<></td></mdl,g<></td></mdl,g<>	20	<mdl,g< td=""><td>10</td><td><mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<></td></mdl,g<>	10	<mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<>	3.1	9
1,2,4-Trichlorobenzene	0.7	<mdl,g< td=""><td>20</td><td><mdl,g< td=""><td>10</td><td><mdl,g< td=""><td>0.81</td><td>1.8</td></mdl,g<></td></mdl,g<></td></mdl,g<>	20	<mdl,g< td=""><td>10</td><td><mdl,g< td=""><td>0.81</td><td>1.8</td></mdl,g<></td></mdl,g<>	10	<mdl,g< td=""><td>0.81</td><td>1.8</td></mdl,g<>	0.81	1.8
Hexachlorobenzene	0.7	<mdl< td=""><td>20</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	10	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	2	<mdl< td=""><td>30</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	20	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	0.5	<mdl< td=""><td>8</td><td><mdl< td=""><td>5</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<></td></mdl<>	8	<mdl< td=""><td>5</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	5	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	2	<mdl< td=""><td>30</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>220</td><td>1,700</td></mdl<></td></mdl<>	20	<mdl< td=""><td>220</td><td>1,700</td></mdl<>	220	1,700
Benzyl Butyl Phthalate	0.7	<mdl< td=""><td>20</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	10	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Bis(2-Ethylhexyl)Phthalate	29		20	<mdl< td=""><td>10</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<>	10	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Di-N-Octyl Phthalate	0.7	<mdl< td=""><td>20</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	10	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	2	<mdl< td=""><td>30</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	20	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	2	<mdl< td=""><td>30</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	20	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine	2	<mdl< td=""><td>30</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	20	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>10</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	10	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg			T					
Phenol	200	<mdl< td=""><td>90</td><td>_<mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<></td></mdl<>	90	_ <mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	90	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	70	_ <mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	30	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	70	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	30	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	70	<mdl< td=""><td>30</td><td></td><td>30</td><td></td><td>29</td><td>29</td></mdl<>	30		30		29	29
Pentachlorophenol	70	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	30	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690
Benzyl Alcohol	70	<mdl< td=""><td>30</td><td><mdl< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<></td></mdl<>	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	30	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	390		90	<mdl< td=""><td>90</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	90	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Metals mg/kg dry weight	0.20		0.035		0.034		- 0 (5	
Mercury	0.39		0.025		0.026		0.41	0.59
Arsenic Cadmium	18	٥-	3.8	G	2.6	G	57	93
	0.79	<u> </u>	0.3	<mdl,l< td=""><td>0.3</td><td><mdl,l< td=""><td>5.1</td><td>6.7</td></mdl,l<></td></mdl,l<>	0.3	<mdl,l< td=""><td>5.1</td><td>6.7</td></mdl,l<>	5.1	6.7
Chromium Copper	58 55		14		14		260	270
Lead	82		11 5		12		390	390
Silver	2.6		0.4	<mdl< td=""><td>6.6</td><td>AMDI</td><td>450</td><td>530</td></mdl<>	6.6	AMDI	450	530
Zinc	110		46	<nidl< td=""><td>0.4 54</td><td><mdl< td=""><td>6.1 410</td><td>6.1 960</td></mdl<></td></nidl<>	0.4 54	<mdl< td=""><td>6.1 410</td><td>6.1 960</td></mdl<>	6.1 410	6.1 960

TABLE 4-9					•	to
Sedi	ment Sta	andards	, Section	ns P3 ar	nd P4	
Section/Locator	P3	LTBC34	P4	LTBC34		
Date Sampled	May	30, 90	May 3	30, 90	Marine	Sediment
Sample Number	900	0440	9000)441	Stan	dards
% Solids		57	7			
% TOC		2.7	0.		SQS	CSL
Parameters	Value	Qual	Value	Qual	Table I	Table III
LPAHs mg/Kg OC						
Naphthalene	2.0	<mdl< td=""><td>30</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	30	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthene	0.4	<mdl< td=""><td>7.0</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	7.0	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57
Acenaphthylene	0.7	<mdl< td=""><td>10</td><td><mdl< td=""><td>66</td><td>66</td></mdl<></td></mdl<>	10	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66
Phenanthrene	17		10	<mdl< td=""><td>100</td><td>480</td></mdl<>	100	480
Fluorene	1.8		10	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79
Anthracene	2.3	MBI	10	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene	2.0	<mdl< td=""><td>30</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	30	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
Total LPAHs	26.2		107.0		370	780
HPAHs mg/Kg OC	27		10	-MDI	160	1 200
Fluoranthene Pyrene	16		10	<mdl< td=""><td>160</td><td>1,200 1,400</td></mdl<>	160	1,200 1,400
Benzo(a)anthracene	8.1		10	<mdl< td=""><td>1,000 110</td><td></td></mdl<>	1,000 110	
Chrysene	14		10	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Total benzofluoranthenes	27		66	SIVIUL	230	460 450
Benzo(a)pyrene	10		20	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene	4.8		20	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Dibenzo(a,h)anthracene	2	<mdl< td=""><td>30</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	30	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene	4.1	CIVIDE	20	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
Total HPAHs	113		196	CIVIDE	960	5,300
mg/Kg OC	113	· .	1.70		900	3,300
1,2-Dichlorobenzene	0.7	<mdl< td=""><td>10</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	10	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene	0.7	<mdl,g< td=""><td>10</td><td><mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<></td></mdl,g<>	10	<mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<>	3.1	9
1,2,4-Trichlorobenzene	0.7	<mdl,g< td=""><td>10</td><td><mdl,g< td=""><td>0.81</td><td>1.8</td></mdl,g<></td></mdl,g<>	10	<mdl,g< td=""><td>0.81</td><td>1.8</td></mdl,g<>	0.81	1.8
Hexachlorobenzene	0.7	<mdl< td=""><td>10</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	10	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	2.0	<mdl< td=""><td>20</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	20	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	0.4	<mdl< td=""><td>6</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	6	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	2.0	<mdl< td=""><td>20</td><td><mdl< td=""><td>220</td><td>1.700</td></mdl<></td></mdl<>	20	<mdl< td=""><td>220</td><td>1.700</td></mdl<>	220	1.700
Benzyl Butyl Phthalate	0.7	<mdl< td=""><td>10</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	10	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Bis(2-Ethylhexyl)Phthalate	32		10	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Di-N-Octyl Phthalate	0.7	<mdl< td=""><td>10</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	10	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	2.0	<mdl< td=""><td>20</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	20	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	2.0	<mdl< td=""><td>20</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	20	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine	2.0	<mdl< td=""><td>20</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	20	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	0.7	<mdl< td=""><td>10</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	10	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg	•					
Phenol	100	<mdl< td=""><td>90</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	90	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	30	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	79		30	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	30	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Pentachlorophenol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	30	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690
Benzyl Alcohol	40	<mdl< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	30	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	400		90	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Metals mg/kg dry weight						
Mercury	0.1		0.025		0.41	0.59
Arsenic	4.5	Ğ	2.5	G	57	93
Cadmium	0.3	<u>L</u>	0.3	<mdl,l< td=""><td>5.1</td><td>6.7</td></mdl,l<>	5.1	6.7
Chromium	24		16		260	270
Copper	22		10		390	390
Lead	15		5.1	145	450	530
Silver	0.45		0.4	<mdl< td=""><td>6.1</td><td>6.1</td></mdl<>	6.1	6.1
Zinc	75	ds SQS	51	Is CSL	410	960

		_				ndards
		/ Cap an	-			
Section/Locator	N Below Ca	ap LTBC34		LTBC34		
Date Sampled	May		May 3			Sediment
Sample Number	9101			1229	Stan	dards
% Solids % TOC	4		8			
		.8		81	sQs	CSL
Parameters	Value	Qual	Value	Qual	Table I	Table III
LPAHs mg/Kg OC Naphthalene	1.5					
	1.5	<mdl< td=""><td>5</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	5	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthene Acenaphthylene	0.42	<mdl< td=""><td>1</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	1	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57
Phenanthrene	0.42 4.2	<mdl< td=""><td>1</td><td><mdl< td=""><td>66</td><td>66</td></mdl<></td></mdl<>	1	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66
Fluorene		-1451	3.8	1461	100	480
Anthracene	1.3	<mdl< td=""><td></td><td><mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<>		<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79
			1	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene Total LPAHs	9.76	<mdl< td=""><td>5</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	5	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
HPAHs mg/Kg OC	9.76		17.8		370	780
Fluoranthene	5.2		£ 7	 	160	1 200
Pyrene	7.5		5.7		160	1,200
Pyrene Benzo(a)anthracene	3.8		6.3		1,000	1,400
Chrysene	6.3		2.5		110	270
Consideration of the Considera	11.9		2.5	4451	110	460
Benzo(a)pyrene	5.2		10	<mdl< td=""><td>230</td><td>450</td></mdl<>	230	450
			3	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
ndeno(1,2,3-Cd)Pyrene Dibenzo(a,h)anthracene	2.1	- 1451	3	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
	1.7	<mdl< td=""><td>5</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	5	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene Fotal HPAHs	45.7		3	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
	45./		41		960	5,300
mg/Kg OC 1,2-Dichlorobenzene	0.4	1401	-	1451	2 2	
1,4-Dichlorobenzene	0.4	<mdl< td=""><td>1 1</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	1 1	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,2,4-Trichlorobenzene	0.4	<mdl,g< td=""><td>1</td><td><mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<></td></mdl,g<>	1	<mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<>	3.1	9
Hexachlorobenzene	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8
Diethyl Phthalate		<mdl< td=""><td>2012/01/22 01/2 2000/03/25/21/20</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	2012/01/22 01/2 2000/03/25/21/20	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Dimethyl Phthalate	0.2	<mdl< td=""><td>3</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	3	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
		<mdl< td=""><td>0.7</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	1	<mdl,b< td=""><td>3</td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<>	3	<mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<>	220	1,700
Benzyl Butyl Phthalate	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	1	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Bis(2-Ethylhexyl)Phthalate	12	1451	33		47	78
Di-N-Octyl Phthalate	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	1	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	1	<mdl< td=""><td>3</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	3	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	1	<mdl< td=""><td>3</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	3	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine Total PCBs		<mdl< td=""><td>3</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	3	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
	14.8		19.5	33	12	65
Ory weight μg/Kg	100	1451		1451	420	1 200
Phenoi	100	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	50	<mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	20	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	50	<mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	20	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol Pentachlorophenol	50	<mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td></td></mdl<></td></mdl<>	20	<mdl< td=""><td>29</td><td></td></mdl<>	29	
	50	<mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	20	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690
Benzyl Alcohol Benzoic Acid	50 100	<mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	20	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Metals mg/kg dry weight	100	<mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	60	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Mercury	1,1		0.31		0.41	0.50
Arsenic	20		6	<mdl< td=""><td>57</td><td>0.59</td></mdl<>	57	0.59
Cadmium	0.45					93
Chromium	48		0.5	<mdl< td=""><td>5.1</td><td>6.7</td></mdl<>	5.1	6.7
		E	6.2	E	260	270
Copper	66	В	5.1 4.9	В	390	390
.ead	68				450	530
Silver	100	В	0.99	P	6.1	6.1
Zinc	Exceed		22	B Is CSL	410	960

				nparison	-
		-	Sections	s O1 and	02
O Below Ca	p LTBC35				
May 30	0, 91				Sediment
				Stan	dards
				-	_ CSL
Value	Qual	Value	Qual	Table I	Table III
	.1401	50	1451		170
	<mdl< td=""><td></td><td></td><td></td><td>170 57</td></mdl<>				170 57
	· 				66
					480
					79
					1,200
	<mdi< td=""><td></td><td></td><td></td><td>64</td></mdi<>				64
	- CIVIDE		* (111)		780
			1	5.0	, 00
49		10	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200
62		10	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400
45		10	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
65		10	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
101		100	<mdl< td=""><td>230</td><td>450</td></mdl<>	230	450
41	_	30	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
14		30	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
4	<mdl< td=""><td></td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>		<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
14		30	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
395		280		960	5,300
1					2.3
1					9
					1.8
					2.3
					110
			<mdl< td=""><td></td><td>53</td></mdl<>		53
	<mdl,b< td=""><td></td><td></td><td></td><td>1,700</td></mdl,b<>				1,700
					64
······································	AADI				78
<u> </u>					4,500
					58 6.2
					11
	CIVIDL				65
72/		10	CIVIDE	12	- 05
60	<mdi< td=""><td>60</td><td><mdi< td=""><td>420</td><td>1,200</td></mdi<></td></mdi<>	60	<mdi< td=""><td>420</td><td>1,200</td></mdi<>	420	1,200
					63
30		20			670
					29
	<mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	20	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690
30	<mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	20	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
60	<mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	60	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
0.55		0.024		0.41	0.59
13		9.8		57	93
1		0.4	<mdl< td=""><td>5.1</td><td>6.7</td></mdl<>	5.1	6.7
46	E	13	E	260	270
	В		В	390	390
					530
	_				6.1
120	SOS		B ds CSL	410	960
	O Below Ca May 30 9101: 78 1 Value 4 2.7 4.9 47 4.5 12 4 79.1 49 62 45 65 101 41 14 4 14 395 1 1 1 3 0.6 3 28 150 1 3 3 3 49 60 30 30 30 30 30 30 30 30 30 30 30 30 30	O Below Cap LTBC35 May 30, 91 9101233 78 1 Value Qual 4 <mdl< td=""> 2.7 4.9 47 4.5 12 4 4 <mdl< td=""> 79.1 49 62 45 65 101 41 14 49 <mdl< td=""> 65 101 41 <mdl< td=""> 14 <mdl< td=""> 395 <mdl< td=""> 1 <mdl,g< td=""> 1 <mdl,g< td=""> 1 <mdl,g< td=""> 1 <mdl< td=""> 3 <mdl< td=""> 3 <mdl< td=""> 3 <mdl< td=""> 3 <mdl< td=""> 30 <mdl< td=""> 30<td>O Below Cap LTBC35 O1 May 30, 91 May 9101233 910 78 8 1 0 Value Qual Value 4 <mdl< th=""> 50 2.7 10 4.9 10 4.5 10 12 10 4.5 10 12 10 4.5 10 62 10 45 10 65 10 101 100 41 30 395 280 1 <mdl< th=""> 50 14 30 395 280 1 <mdl< th=""> 10 1 <mdl< th=""> 10 1 <mdl< th=""> 10 3 <mdl< th=""> 30 3 <mdl< th=""> 30 3 <mdl< th=""> 30 3 <mdl< th=""> 30 <</mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></td><td>O Below Cap LTBC35 O1 May 30, 91 LTBC35 May 30, 91 May 30, 91 P101234 78 82 1 1 0.08 Value Qual 4 <mdl< th=""> 50 <mdl< th=""> 2.7 10 <mdl< th=""> 4.9 4.9 10 <mdl< th=""> 4.9 4.9 10 <mdl< th=""> 4.9 4.5 10 <mdl< th=""> 4.9 4.5 10 <mdl< th=""> 4.0 4.5 10 <mdl< th=""> 4.0 4.9 10 <mdl< th=""></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></td><td>May 30, 91 May 30, 91 Marine 9 9101233 9101234 Stan 78 82 1 0.08 SQS Value Qual Value Qual Table I 4 <mdl< td=""> 50 <mdl< td=""> 99 2.7 10 <mdl< td=""> 16 4.9 10 <mdl< td=""> 16 4.5 10 <mdl< td=""> 23 12 10 <mdl< td=""> 220 4 <mdl< td=""> 50 <mdl< td=""> 220 4 <mdl< td=""> 50 <mdl< td=""> 23 12 10 <mdl< td=""> 220 4 <mdl< td=""> 50 <mdl< td=""> 33 79.1 150 370 49 10 <mdl< td=""> 160 62 10 <mdl< td=""> 1,000 45 10 <mdl< td=""> 110 41 30 <mdl< td=""> 230</mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></td></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl,g<></mdl,g<></mdl,g<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>	O Below Cap LTBC35 O1 May 30, 91 May 9101233 910 78 8 1 0 Value Qual Value 4 <mdl< th=""> 50 2.7 10 4.9 10 4.5 10 12 10 4.5 10 12 10 4.5 10 62 10 45 10 65 10 101 100 41 30 395 280 1 <mdl< th=""> 50 14 30 395 280 1 <mdl< th=""> 10 1 <mdl< th=""> 10 1 <mdl< th=""> 10 3 <mdl< th=""> 30 3 <mdl< th=""> 30 3 <mdl< th=""> 30 3 <mdl< th=""> 30 <</mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>	O Below Cap LTBC35 O1 May 30, 91 LTBC35 May 30, 91 May 30, 91 P101234 78 82 1 1 0.08 Value Qual 4 <mdl< th=""> 50 <mdl< th=""> 2.7 10 <mdl< th=""> 4.9 4.9 10 <mdl< th=""> 4.9 4.9 10 <mdl< th=""> 4.9 4.5 10 <mdl< th=""> 4.9 4.5 10 <mdl< th=""> 4.0 4.5 10 <mdl< th=""> 4.0 4.9 10 <mdl< th=""></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>	May 30, 91 May 30, 91 Marine 9 9101233 9101234 Stan 78 82 1 0.08 SQS Value Qual Value Qual Table I 4 <mdl< td=""> 50 <mdl< td=""> 99 2.7 10 <mdl< td=""> 16 4.9 10 <mdl< td=""> 16 4.5 10 <mdl< td=""> 23 12 10 <mdl< td=""> 220 4 <mdl< td=""> 50 <mdl< td=""> 220 4 <mdl< td=""> 50 <mdl< td=""> 23 12 10 <mdl< td=""> 220 4 <mdl< td=""> 50 <mdl< td=""> 33 79.1 150 370 49 10 <mdl< td=""> 160 62 10 <mdl< td=""> 1,000 45 10 <mdl< td=""> 110 41 30 <mdl< td=""> 230</mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>

TABLE 4-	10 (continu	ıed). P	Core: 19	91 Comp	oarison to)	
Sedim	ent Standa	rds, Be	low Cap a	and Secti	ons P1		
Section/Locator	P Below Ca	p LTBD24	P1 L	TBD24			
Date Sampled	May 3		May 3		Marine	Sediment	
Sample Number	9101	238	9101		Stan	dards	
% Solids	72		85				
% TOC	1.9		0.1		SQS	CSL	
Parameters	Value	Qual	Value	Qual	Table I	Table II	
LPAHs mg/Kg OC	· ,					T	
Naphthalene	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	20	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170	
Acenaphthene Acenaphthylene	0.5	<mdl< td=""><td>6</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	6	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57	
Phenanthrene	8.9	<mdl< td=""><td>27</td><td><mdl< td=""><td>66</td><td>66</td></mdl<></td></mdl<>	27	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66	
Fluorene	0.5	<mdl< td=""><td>6</td><td><mdl< td=""><td>100 23</td><td>480</td></mdl<></td></mdl<>	6	<mdl< td=""><td>100 23</td><td>480</td></mdl<>	100 23	480	
Anthracene	2.8	CIVIDE	6	<mdl< td=""><td>220</td><td>79</td></mdl<>	220	79	
2-Methylnaphthalene	2.8	<mdl< td=""><td>20</td><td><mdl< td=""><td>38</td><td>1,200 64</td></mdl<></td></mdl<>	20	<mdl< td=""><td>38</td><td>1,200 64</td></mdl<>	38	1,200 64	
Total LPAHs	17.2	CIVIDE	89	CIVIDE	370	780	
HPAHs mg/Kg OC	1/.4	 -	0.7		3/0	/00	
Fluoranthene	19	 -	28		160	1,200	
Pyrene	21		19		1,000	1,400	
Benzo(a)anthracene	9.5		13		110	270	
Chrysene	12		13		110	460	
Total benzofluoranthenes	24		40	<mdl< td=""><td>230</td><td>450</td></mdl<>	230	450	
Benzo(a)pyrene	8.9		10	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210	
Indeno(1,2,3-Cd)Pyrene	2.9		10	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88	
Dibenzo(a,h)anthracene	2	<mdl< td=""><td>20</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	20	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33	
Benzo(g,h,i)perylene	2	<mdl< td=""><td>10</td><td><mdl< td=""><td>31</td><td>78</td></mdl<></td></mdl<>	10	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78	
Total HPAHs	101.3		163	11110	960	5,300	
mg/Kg OC			, ,,,,,			3,300	
1,2-Dichlorobenzene	0.5	<mdl< td=""><td>6</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	6	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3	
1,4-Dichlorobenzene	0.5	<mdl,g< td=""><td>6</td><td><mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<></td></mdl,g<>	6	<mdl,g< td=""><td>3.1</td><td>9</td></mdl,g<>	3.1	9	
1,2,4-Trichlorobenzene	0.5	<mdl< td=""><td>6</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	6	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8	
Hexachlorobenzene	0.5	<mdl< td=""><td>6</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	6	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3	
Diethyl Phthalate	2	<mdl< td=""><td>10</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	10	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110	
Dimethyl Phthalate	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	3	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53	
Di-N-Butyl Phthalate	10	В	10	<mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<>	220	1,700	
Benzyl Butyl Phthalate	0.5	<mdl< td=""><td>6</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	6	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64	
Bis(2-Ethylhexyl)Phthalate	150		6	<mdl< td=""><td>47</td><td> 78</td></mdl<>	47	78	
Di-N-Octyl Phthalate	0.5	<mdl< td=""><td>6</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	6	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500	
Dibenzofuran	2	<mdl< td=""><td>10</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	10	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58	
Hexachlorobutadiene	2	<mdl< td=""><td>10</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	10	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2	
N-Nitrosodiphenylamine	2	<mdl< td=""><td>10</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	10	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11	
Total PCBs	257		6	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65	
Dry weight μg/Kg	70		70	1401	420	1 200	
Phenol 2-Methylphenol	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200	
	30 30	<mdl< td=""><td>20</td><td><mdl <mdl< td=""><td>63</td><td>63</td></mdl<></mdl </td></mdl<>	20	<mdl <mdl< td=""><td>63</td><td>63</td></mdl<></mdl 	63	63	
4-Methylphenol		<mdl< td=""><td>20</td><td></td><td>670</td><td>670</td></mdl<>	20		670	670	
2,4-Dimethylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	20	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29	
Pentachlorophenol Benzyl Alcohol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>360 57</td><td>690</td></mdl<></td></mdl<>	20	<mdl< td=""><td>360 57</td><td>690</td></mdl<>	360 57	690	
Benzyi Alconol Benzoic Acid	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>73 650</td></mdl<></td></mdl<>	60	<mdl< td=""><td>650</td><td>73 650</td></mdl<>	650	73 650	
Metals mg/kg dry weight	1 70	CIVIDL	1 00	CIVIDL	0.50	630	
Mercury	1.3	-	0.024		0.41	0.59	
Arsenic	14		9.4		57	93	
Cadmium	1.4		0.2	<mdl< td=""><td>5.1</td><td>6.7</td></mdl<>	5.1	6.7	
Chromium	60	E	13	E	260	270	
Copper	71	В	11	B	390	390	
Lead	150		5.9	-	450	530	
Silver	12		0.4	<mdl< td=""><td>6.1</td><td>6.1</td></mdl<>	6.1	6.1	
Zinc	190	В	47	В	410	960	
	Exceed			s CSL	110	200	

TABLE 4-11			=				standard	S,
		•	and Sec	tions N	11 and 1	N2		
Section/Locator	N Below Ca	p LTBC34		TBC34	N2 L	TBC34		
Date Sampled	May 19	9, 92	May 1	9, 92	May 1	9, 92	Marine	Sediment
Sample Number	9201	197	9201		9201	199	Stan	dards
% Solids	71		86	5	83			
% TOC	2.5	5	1	•	1.2	7	SQS	CSL
Parameters	Value	Qual	Value	Qual	Value	Qual	Table I	Table II
LPAHs mg/Kg OC	•					`		
Naphthalene	2	<mdl< td=""><td>3</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></td></mdl<>	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	2	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthene	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.6</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57
Acenaphthylene	0.4	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>0.5</td><td><mdl< td=""><td>66</td><td>66</td></mdl<></td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>0.5</td><td><mdl< td=""><td>66</td><td>66</td></mdl<></td></mdl<>	0.5	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66
Phenanthrene	9.2		1	<mdl< td=""><td>1.3</td><td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>100</td><td>480</td></mdl<>	1.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100	480
Fluorene	0.8		i	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79
Anthracene	2.4		<u> </u>	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene	2.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<></td></mdl<>	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	2	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
Total LPAHs	17.2	CIVIDE	10.8	< IVIDE	7.6	KIVIDL		
HPAHs mg/Kg OC	17.2	-	10.0		7.0		370	780
Fluoranthona	13		1 1	MDI	7 7		1/0	1 200
Fluoranthene			21	<mdl< td=""><td>2.2</td><td></td><td>160</td><td>1,200</td></mdl<>	2.2		160	1,200
Pyrene	15		2.1	1451	2.7		1,000	1,400
Benzo(a)anthracene	6.8		1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Chrysene	8.4		1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>110</td><td>460</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
Total benzofluoranthenes	23		6		4		230	450
Benzo(a)pyrene	9.6		2	<mdl< td=""><td>1</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></mdl<>	1	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene	5.6		2	<mdl< td=""><td>1</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	1	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Dibenzo(a,h)anthracene	2	<rdl< td=""><td>3</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<></td></rdl<>	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	2	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene	1	<mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>31</td><td>78</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>1</td><td><mdl< td=""><td>31</td><td>78</td></mdl<></td></mdl<>	1	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
Total HPAHs	84.6		20.1	·	15.1		960	5,300
mg/Kg OC	•							
1,2-Dichlorobenzene	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.6</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.6</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9
1,2,4-Trichlorobenzene	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.6</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8
Hexachlorobenzene	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>0,6</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>0,6</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	0,6	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	1	<mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>1</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	1	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	0.3	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>0.4</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	1	<mdl,b< td=""><td>2</td><td><mdl,b< td=""><td>1</td><td><rdl,b< td=""><td>220</td><td>1,700</td></rdl,b<></td></mdl,b<></td></mdl,b<>	2	<mdl,b< td=""><td>1</td><td><rdl,b< td=""><td>220</td><td>1,700</td></rdl,b<></td></mdl,b<>	1	<rdl,b< td=""><td>220</td><td>1,700</td></rdl,b<>	220	1,700
Benzyl Butyl Phthalate	2.6	(11102,0	1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Bis(2-Ethylhexyl)Phthalate	52		3.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.6	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Di-N-Octyl Phthalate	0.4	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.6</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	1	<mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>1</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	1	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	1	<mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3.9</td><td></td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>1</td><td><mdl< td=""><td>3.9</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3.9</td><td></td></mdl<>	3.9	
	 				1			6.2
N-Nitrosodiphenylamine		<mdl< td=""><td>2</td><td><mdl< td=""><td></td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td></td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>		<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	42.6		2	<mdl< td=""><td>1</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	1	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg	70	1.45		145			400	
Phenol	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<></td></mdl<>	60	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	20	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	20	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	20	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Pentachlorophenol	30	<mdl< td=""><td>20</td><td><mdl_< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl_<></td></mdl<>	20	<mdl_< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl_<>	20	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690
Benzyl Alcohol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	20	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<></td></mdl<>	60	<mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	60	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Metals mg/kg dry weight								
Mercury	1		0.035		0.024		0.41	0.59
Arsenic	11		7		8.4		57	93
Cadmium	1.1	L	0.23	L	0.12	Ĺ	5.1	6.7
Chromium	41	_	14		12		260	270
Copper	58	В	12	В	13	В	390	390
Lead	110	E,B	4.7	E,B	4.8	E,B	450	530
Silver	5.4	_,,0	0.35	٠,٥	0.36	۲,0	6.1	6.1
Zinc	110	В	45	В	45	В	410	960
ムルル	110	D	•••.)	13	→.)	D	411	+ 90U

			Sections N				
Section/Locator		TBC34		TBC34			
Date Sampled	May 19		May 19		Marine :	Sediment	
Sample Number	92012		92012		<u>Standards</u>		
% Solids	75		86				
% TOC	2.4		0.4		sqs	CSL	
Parameters	Value	Qual	Value	Qual	Table I	Table II	
LPAHs mg/Kg OC Naphthalene	<u> </u>	. 1451		MADI			
Acenaphthene	0.4	<mdl <mdl< td=""><td>8</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></mdl 	8	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170	
Acenaphthylene	0.4	<mdl< td=""><td>3 2</td><td><mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl </td></mdl<>	3 2	<mdl <mdl< td=""><td>16 66</td><td>57</td></mdl<></mdl 	16 66	57	
Phenanthrene	1.7	CIVIDE	3	<mdl< td=""><td>100</td><td>66 480</td></mdl<>	100	66 480	
Fluorene	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>23</td><td>79</td></mdl<></td></mdl<>	3	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79	
Anthracene	0.4	<rdl< td=""><td>3</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></rdl<>	3	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200	
2-Methylnaphthalene	2	<mdl< td=""><td>8</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	8	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64	
Total LPAHs	7.3	_ <wide< td=""><td>30</td><td>CIVIDE</td><td>370</td><td>780</td></wide<>	30	CIVIDE	370	780	
HPAHs mg/Kg OC					3/0	/00	
Fluoranthene	4.2		3	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200	
Pyrene	3		3	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400	
Benzo(a)anthracene	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	3	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270	
Chrysene	1.4	NIDE.	3	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460	
Total benzofluoranthenes	4	 -	16	NITIOL	230	450	
Benzo(a)pyrene	1	<rdl< td=""><td>5</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></rdl<>	5	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210	
Indeno(1,2,3-Cd)Pyrene	1	<mdl< td=""><td>5</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	5	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88	
Dibenzo(a,h)anthracene	2	<mdl< td=""><td>8</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	8	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33	
Benzo(g,h,i)perylene	1 1	<mdl< td=""><td>5</td><td><mdl< td=""><td>31</td><td>78</td></mdl<></td></mdl<>	5	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78	
Total HPAHs	18		51	,,,,D	960	5,300	
mg/Kg OC	<u>;</u>		, ,,		700	3,300	
1,2-Dichlorobenzene	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	3	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3	
1,4-Dichlorobenzene	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	3	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9	
1,2,4-Trichlorobenzene	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	3	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8	
Hexachlorobenzene	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	3	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3	
Diethyl Phthalate	1	<mdl< td=""><td>5</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	5	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110	
Dimethyl Phthalate	0.3	<mdl< td=""><td>2</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	2	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53	
Di-N-Butyl Phthalate	1	<mdl,b< td=""><td>5</td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<>	5	<mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<>	220	1,700	
Benzyl Butyl Phthalate	0.4	<mdĺ< td=""><td>3</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdĺ<>	3	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64	
Bis(2-Ethylhexyl)Phthalate	2.8		3	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78	
Di-N-Octyl Phthalate	0.4	<mdl< td=""><td>3</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	3	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500	
Dibenzofuran	1	<mdl< td=""><td>5</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	5	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58	
Hexachlorobutadiene	1	<mdl< td=""><td>5</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	5	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2	
N-Nitrosodiphenylamine	1	<mdl,b< td=""><td>5</td><td><mdl,b< td=""><td>11</td><td>11</td></mdl,b<></td></mdl,b<>	5	<mdl,b< td=""><td>11</td><td>11</td></mdl,b<>	11	11	
Total PCBs	0.8	<mdl< td=""><td>5</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	5	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65	
Dry weight μg/Kg							
Phenol	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200	
2-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	20	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63	
4-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	20	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670	
2,4-Dimethylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	20	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29	
Pentachlorophenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	20	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690	
Benzyl Alcohol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	20	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73	
Benzoic Acid	130		60	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650	
Metals mg/kg dry weight							
Mercury	0.027		0.023		0.41	0.59	
Arsenic	9.3	<u> </u>	7		57	93	
Cadmium	0.27	L	0.12	L	5.1	6.7	
Chromium	15		11		260	270	
Copper	15	B	9.4	В	390	390	
_ead	6.7	E,B	3.5	E,B	450	530	
Silver	0.4	**	0.23		6.1	6.1	
Zinc	51 Exceeds	B	38	В	410	960	

	DEIOW	Cap a	na seci	nons O	1 and C	12		
Section/Locator	O Below Cap	LTBC35	01	LTBC35	O2 I	LTBC35	· · · · · ·	
Date Sampled	May 19,			19, 92	May 19		Marine :	Sediment
Sample Number	920118	9		190	9201		Stan	dards
% Solids	75			6	87			
% TOC	3.3			.4	1.:		sQs	CSL
Parameters	Value	Qual	Value	Qual	Value	Qual	Table I	Table II
LPAHs mg/Kg OC	1.3	AADI		1451				
Naphthalene	1.2	<mdl< td=""><td>2</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>2</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	2	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthene Acenaphthylene	0.82 0.94		0.7 0.6	<mdl< td=""><td>0.7 0.5</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	0.7 0.5	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57
Phenanthrene	13		0.6	<mdl <mdl< td=""><td>0.5</td><td></td><td>66</td><td>66</td></mdl<></mdl 	0.5		66	66
Fluorene	1.1		0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>100</td><td>480</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>100</td><td>480</td></mdl<>	100	480
Anthracene	7.3		0.7	<mdl< td=""><td>0.7</td><td><mdl <mdl< td=""><td>23</td><td>79</td></mdl<></mdl </td></mdl<>	0.7	<mdl <mdl< td=""><td>23</td><td>79</td></mdl<></mdl 	23	79
2-Methylnaphthalene	1 1	<mdl< td=""><td>2</td><td><mdl< td=""><td></td><td></td><td>220</td><td>1,200</td></mdl<></td></mdl<>	2	<mdl< td=""><td></td><td></td><td>220</td><td>1,200</td></mdl<>			220	1,200
Total LPAHs	25.36	< IVIDL	7.4	<iviul< td=""><td>7.3</td><td><mdl< td=""><td>38 370</td><td>64 780</td></mdl<></td></iviul<>	7.3	<mdl< td=""><td>38 370</td><td>64 780</td></mdl<>	38 370	64 780
HPAHs mg/Kg OC	23.30		. / ,4		7.3		3/0	/60
Fluoranthene	23		0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>160</td><td>1,200</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200
Pyrene	17		0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>1,000</td><td>1,400</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400
Benzo(a)anthracene	12		0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>110</td><td>270</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Chrysene	16		0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>110</td><td>460</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
Total benzofluoranthenes	43		4	< IVIDE	4	CIVIDE	230	450
Benzo(a)pyrene	14		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>99</td><td>210</td></mdl<></td></mdl<>	1	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene	0.9	<mdl< td=""><td><u> </u></td><td><mdl< td=""><td>·i</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<></td></mdl<>	<u> </u>	<mdl< td=""><td>·i</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	·i	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Dibenzo(a,h)anthracene	1	<mdl< td=""><td>2</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>2</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	2	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene	0.9	<mdl< td=""><td>1</td><td><mdl< td=""><td></td><td><mdl< td=""><td>31</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td></td><td><mdl< td=""><td>31</td><td></td></mdl<></td></mdl<>		<mdl< td=""><td>31</td><td></td></mdl<>	31	
Total HPAHs	127.8	(111.0)	11.8	(IVIDE	11.8		960	5,300
mg/Kg OC	1						,,,,	3,300
1,2-Dichlorobenzene	0.3	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.7</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene	0.3	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.7</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9
1,2,4-Trichlorobenzene	0.3	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8
Hexachlorobenzene	0.3	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	0.9	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	1	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	0.2	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>0.4</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	0.9	<mdl,b< td=""><td>1</td><td><mdl,b< td=""><td></td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<></td></mdl,b<>	1	<mdl,b< td=""><td></td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<>		<mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<>	220	1,700
Benzyl Butyl Phthalate	2.9		0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Bis(2-Ethylhexyl)Phthalate	39		0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Di-N-Octyl Phthalate	0.3	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.7</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	0.9	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	1	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	0.9	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	1	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine	0.9	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	1	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	9.9		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	1	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg								
Phenol	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<></td></mdl<>	60	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	20	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	20	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	20	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Pentachlorophenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	20	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690
Benzyl Alcohol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	20	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<></td></mdl<>	60	<mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	60	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Metals mg/kg dry weight								
Mercury	0.37		0.023		0.02	<mdl< td=""><td>0.41</td><td>0.59</td></mdl<>	0.41	0.59
Arsenic	12		7		8		57	93
Cadmium	0.84	L	0.093	L	0.11	L	5.1	6.7
Chromium	32		11		11		260	270
Copper	48	В	12	В	11	В	390	390
Lead	81	E,B	3.5	E,B	3.4	E,B	450	530
Silver	3.6		0.35		0.23		6.1	6.1
Zinc	91 Exceeds S	В	41 Exceed	В	40	В	410	960

	l-12 (conti sediment s			_		
					U4 	
Section/Locator	03	LTBC35	04	LTBC35		
Date Sampled Sample Number	May	19, 92 1192	May	19, 92		Sediment
% Solids				1193	Stan	dards
% TOC		.77		79	505	
Parameters	Value			.4	sqs	_ CSL
LPAHs mg/Kg OC	Value	Qual	Value	Qual	Table I	Table III
Naphthalene	5	<mdl< td=""><td>T</td><td>1401</td><td>-00</td><td></td></mdl<>	T	1401	-00	
Acenaphthene	1 1	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthylene	 	<mdl< td=""><td>0.7</td><td><mdl <mdl< td=""><td>16</td><td>57</td></mdl<></mdl </td></mdl<>	0.7	<mdl <mdl< td=""><td>16</td><td>57</td></mdl<></mdl 	16	57
Phenanthrene	 	<mdl< td=""><td>4.2</td><td>< IVIDL</td><td>66</td><td>66</td></mdl<>	4.2	< IVIDL	66	66
Fluorene	 	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>100</td><td>480</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>100</td><td>480</td></mdl<>	100	480
Anthracene	1	<mdl< td=""><td>0.7</td><td></td><td>23</td><td>79</td></mdl<>	0.7		23	79
2-Methylnaphthalene	5	<mdl< td=""><td>3</td><td><mdl< td=""><td>220</td><td>1,200</td></mdl<></td></mdl<>	3	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
Total LPAHs	15	KIVIDL	12.9	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
HPAHs mg/Kg OC		· · · · · · · · · · · · · · · · · · ·	12.9		370	780
Fluoranthene	1	ZMDI	11		1.00	1 200
Pyrene	1	<mdl< td=""><td>11</td><td></td><td>160</td><td>1,200</td></mdl<>	11		160	1,200
Benzo(a)anthracene	1 1	<mdl <mdl< td=""><td>5.1</td><td></td><td>1,000</td><td>1,400</td></mdl<></mdl 	5.1		1,000	1,400
Chrysene	1	<mdl <mdl< td=""><td>2.8</td><td></td><td>110</td><td>270</td></mdl<></mdl 	2.8		110	270
Total benzofluoranthenes	10	<nidt< td=""><td>5.7</td><td></td><td>110</td><td>460</td></nidt<>	5.7		110	460
Benzo(a)pyrene	3	<mdl< td=""><td>7</td><td></td><td>230</td><td>450</td></mdl<>	7		230	450
Indeno(1,2,3-Cd)Pyrene	3	<mdl< td=""><td>3.3</td><td>-1451</td><td>99</td><td>210</td></mdl<>	3.3	-1451	99	210
Dibenzo(a,h)anthracene	5	<mdl< td=""><td>3</td><td><mdl< td=""><td>34</td><td>88</td></mdl<></td></mdl<>	3	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Benzo(g,h,i)perylene	3	<mdl< td=""><td>2</td><td><mdl <mdl< td=""><td>12 31</td><td>33</td></mdl<></mdl </td></mdl<>	2	<mdl <mdl< td=""><td>12 31</td><td>33</td></mdl<></mdl 	12 31	33
Total HPAHs	28	ZIVIDE	41.9	<ndl< td=""><td>960</td><td>78</td></ndl<>	960	78
mg/Kg OC			41.9		960	5,300
1,2-Dichlorobenzene	1	<mdl< td=""><td>0.7</td><td>- AADI</td><td>2.3</td><td>2.2</td></mdl<>	0.7	- AADI	2.3	2.2
1,4-Dichlorobenzene	1 1	<mdl< td=""><td>0.7</td><td><mdl <mdl< td=""><td></td><td>2.3</td></mdl<></mdl </td></mdl<>	0.7	<mdl <mdl< td=""><td></td><td>2.3</td></mdl<></mdl 		2.3
1,2,4-Trichlorobenzene	1	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9
Hexachlorobenzene	1	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8
Diethyl Phthalate	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>0.38 61</td><td>2.3</td></mdl<></td></mdl<>	2	<mdl< td=""><td>0.38 61</td><td>2.3</td></mdl<>	0.38 61	2.3
Dimethyl Phthalate	0.8	<mdl< td=""><td>0.4</td><td><mdl< td=""><td></td><td>110</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td></td><td>110</td></mdl<>		110
Di-N-Butyl Phthalate	3	<mdl,b< td=""><td>2</td><td><mdl,b< td=""><td>53 220</td><td>53</td></mdl,b<></td></mdl,b<>	2	<mdl,b< td=""><td>53 220</td><td>53</td></mdl,b<>	53 220	53
Benzyl Butyl Phthalate	1	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>4.9</td><td>1,700</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>4.9</td><td>1,700</td></mdl<>	4.9	1,700
Bis(2-Ethylhexyl)Phthalate	 	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Di-N-Octyl Phthalate	1	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>58</td><td>78</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>58</td><td>78</td></mdl<>	58	78
Dibenzofuran	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>15</td><td>4,500</td></mdl<></td></mdl<>	2	<mdl< td=""><td>15</td><td>4,500</td></mdl<>	15	4,500
Hexachlorobutadiene	3	<mdl< td=""><td>2</td><td><mdl< td=""><td></td><td>58</td></mdl<></td></mdl<>	2	<mdl< td=""><td></td><td>58</td></mdl<>		58
N-Nitrosodiphenylamine	3	<mdl< td=""><td>2</td><td><mdl< td=""><td>3.9 11</td><td>6.2</td></mdl<></td></mdl<>	2	<mdl< td=""><td>3.9 11</td><td>6.2</td></mdl<>	3.9 11	6.2
Total PCBs	3	<mdl< td=""><td>1</td><td><mdl< td=""><td>12</td><td>11 65</td></mdl<></td></mdl<>	1	<mdl< td=""><td>12</td><td>11 65</td></mdl<>	12	11 65
Dry weight μg/Kg	1 -	CIVIDE	<u> </u>	< IVIDL	12	- 63
Phenol	60	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1 200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1 200</td></mdl<>	420	1 200
2-Methylphenol	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>420 63</td><td>1,200</td></mdl<></td></mdl<>	30	<mdl< td=""><td>420 63</td><td>1,200</td></mdl<>	420 63	1,200
4-Methylphenol	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>63</td></mdl<></td></mdl<>	30	<mdl< td=""><td>670</td><td>63</td></mdl<>	670	63
2,4-Dimethylphenol	20	<mdl< td=""><td>30</td><td></td><td></td><td>670</td></mdl<>	30			670
Pentachlorophenol	20	<mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	30	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Benzyl Alcohol	20	<mdl< td=""><td>30</td><td><mdl <mdl< td=""><td>360 57</td><td>690</td></mdl<></mdl </td></mdl<>	30	<mdl <mdl< td=""><td>360 57</td><td>690</td></mdl<></mdl 	360 57	690
Benzoic Acid	60	<mdl< td=""><td>60</td><td><mdl< td=""><td></td><td>73</td></mdl<></td></mdl<>	60	<mdl< td=""><td></td><td>73</td></mdl<>		73
Metals mg/kg dry weight		CIVIDE	, 00	<ividl .<="" td=""><td>650</td><td>650</td></ividl>	650	650
Mercury	0.024		0.063		0.41	0.50
Arsenic	7.3	 -	6.3		57	0.59
Cadmium	0.12	L	0.13	L		93
Chromium	13	<u>-</u>	14	L	5.1 260	6.7 270
Copper	12	В	14	В	390	390
Lead	3.7	E,B	8	E,B	450	530
Silver	0.24		0.51	L, D	6.1	6.1
Zinc	46	В	48	В	410	
		ds SQS		is CSL	710	960

TABLE 4-13.			_		nt Standa	rds,		
		•	nd Section	P1				
Section/Locator	P Below Cap			TBD24				
Date Sampled	May 1		May 19		Marine Sediment			
Sample Number	9201205			9201206		Standards		
% Solids	65		75					
% TOC	4.		1.1		SQS	CSL		
Parameters	Value	Qual	Value	Qual	Table I	Table II		
LPAHs mg/Kg OC			T					
Naphthalene	1	<rdl< td=""><td>4</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></rdl<>	4	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170		
Acenaphthene	1.2		0.9	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57		
Acenaphthylene	1.2	· · · · · · · · · · · · · · · · · · ·	0.8	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66		
Phenanthrene	8.6		0.9	<mdl< td=""><td>100</td><td>480</td></mdl<>	100	480		
Fluorene	1.5		0.9	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79		
Anthracene	2.3	- MDI	0.9	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200		
2-Methylnaphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<mdl< td=""><td>4</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	4	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64		
Total LPAHs HPAHs mg/Kg OC	16.8		12.4		370	780		
Fluoranthene	12	 	0.0	AADI	140	4 000		
Pyrene	13 23		0.9	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200		
Pyrene Benzo(a)anthracene	8.6		0.9	<mdl <mdl< td=""><td>1,000</td><td>1,400</td></mdl<></mdl 	1,000	1,400		
Chrysene	12		0.9		110	270		
Total benzofluoranthenes	37	·-·	0.9 8	<mdl< td=""><td>110 230</td><td>460</td></mdl<>	110 230	460		
Benzo(a)pyrene	13		3	<mdl< td=""><td>99</td><td>450</td></mdl<>	99	450		
Indeno(1,2,3-Cd)Pyrene	5.1		3	<mdl< td=""><td>34</td><td>210</td></mdl<>	34	210		
Dibenzo(a,h)anthracene	1 1	<mdl< td=""><td>4</td><td><mdl< td=""><td>12</td><td>88</td></mdl<></td></mdl<>	4	<mdl< td=""><td>12</td><td>88</td></mdl<>	12	88		
Benzo(g,h,i)perylene	5.3	- CIVIDL	3	<mdl< td=""><td>31</td><td>33</td></mdl<>	31	33		
Total HPAHs	118		24.6	<nidl< td=""><td>960</td><td>78</td></nidl<>	960	78		
mg/Kg OC	110		24.0		900	5,300		
1,2-Dichlorobenzene	0.2	<mdl< td=""><td>0.9</td><td><mdl< td=""><td>2.3</td><td>2 2</td></mdl<></td></mdl<>	0.9	<mdl< td=""><td>2.3</td><td>2 2</td></mdl<>	2.3	2 2		
1,4-Dichlorobenzene	0.2	<mdl< td=""><td>0.9</td><td><mdl< td=""><td>3.1</td><td>2.3</td></mdl<></td></mdl<>	0.9	<mdl< td=""><td>3.1</td><td>2.3</td></mdl<>	3.1	2.3		
1,2,4-Trichlorobenzene	0.2	<mdl< td=""><td>0.9</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	0.9	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8		
Hexachlorobenzene	0.2	<mdl< td=""><td>0.9</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	0.9	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3		
Diethyl Phthalate	0.7	<mdl< td=""><td>3</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	3	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110		
Dimethyl Phthalate	0.2	<mdl< td=""><td>0.6</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.6	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53		
Di-N-Butyl Phthalate	0.7	<mdl,b< td=""><td>3</td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<>	3	<mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<>	220	1,700		
Benzyl Butyl Phthalate	0.2	<mdl< td=""><td>0.9</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	0.9	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64		
Bis(2-Ethylhexyl)Phthalate	98	CIVIDE	0.9	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78		
Di-N-Octyl Phthalate	0.2	<mdl< td=""><td>0.9</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	0.9	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500		
Dibenzofuran	0.7	<mdl< td=""><td>3</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	3	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58		
-lexachlorobutadiene	0.7	<mdl< td=""><td>3</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	3	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2		
N-Nitrosodiphenylamine	0.7	<mdl,b< td=""><td>3</td><td><mdl,b< td=""><td>11</td><td>11</td></mdl,b<></td></mdl,b<>	3	<mdl,b< td=""><td>11</td><td>11</td></mdl,b<>	11	11		
Total PCBs	32.7	111.0 2,0	2	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65		
Dry weight μg/Kg	1.0.000.00		-	1,1,0				
Phenol	80	<mdl< td=""><td>70</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	70	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200		
2-Methylphenol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	30	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63		
1-Methylphenol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	30	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670		
2,4-Dimethylphenol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	30	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29		
Pentachlorophenol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	30	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690		
Benzyl Alcohol	30	<mdl< td=""><td>30</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	30	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73		
Benzoic Acid	80	<mdl< td=""><td>70</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	70	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650		
Metals mg/kg dry weight	t-		·					
Mercury	1		0.03	<mdl< td=""><td>0.41</td><td>0.59</td></mdl<>	0.41	0.59		
Arsenic	12		8		57	93		
Cadmium	2.5	L	0.13	L	5.1	6.7		
Chromium	51		12	+	260	270		
Copper	80	В	13	В	390	390		
ead	150	E,B	8.4	E,B	450	530		
Silver	7.2		0.27		6.1	6.1		
Zinc	250	В	49	В	410	960		

TABLE 4-14.	Core Replicates:	1992 Comparison to Sediment Standards,
	Below	Cap and Section N1

Section/Locator Date Sampled	N Below Cap LTBC34 May 19, 92			LTBC34			
Sample Number		1202	May	19, 92 1203	Marine Sediment		
% Solids					Stan	dards_	
% TOC	49			33	coc		
Parameters	Value	Qual	Value	.5	_sqs	_ CSL	
LPAHs mg/Kg OC	Value	Quai	value	Qual	Table I	Table III	
Naphthalene	1 1	<mdl< td=""><td>3</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	3	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170	
Acenaphthene	0.5	<rdl< td=""><td>0.7</td><td><mdl< td=""><td>16</td><td>170</td></mdl<></td></rdl<>	0.7	<mdl< td=""><td>16</td><td>170</td></mdl<>	16	170	
Acenaphthylene	0.75	- CNDL	0.5	<mdl< td=""><td>66</td><td>57</td></mdl<>	66	57	
Phenanthrene	6.1		0.7	<mdl< td=""><td>100</td><td>66</td></mdl<>	100	66	
Fluorene	0.89		0.7	<mdl< td=""><td>23</td><td>480 79</td></mdl<>	23	480 79	
Anthracene	1.8		0.7	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200	
2-Methylnaphthalene	1	<mdl< td=""><td>3</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	3	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64	
Total LPAHs	12.04	NAIDE .	9.3	(WIDE	370	780	
HPAHs mg/Kg OC	1 .2.01	J			3/0	/60	
Fluoranthene	20		0.7	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200	
Pyrene	11		2.3	NIVIDE	1,000	1,400	
Benzo(a)anthracene	4.5		0.7	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270	
Chrysene	4.3		0.7	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460	
Total benzofluoranthenes	15.9		6	SIVIDE	230	450	
Benzo(a)pyrene	8		<u>J</u>	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210	
Indeno(1,2,3-Cd)Pyrene	3		i	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88	
Dibenzo(a,h)anthracene	1	<mdl< td=""><td>3</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	3	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33	
Benzo(g,h,i)perylene	2.7	- (IVIDE	<u> </u>	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78	
Total HPAHs	70.4		16.4	NIDE.	960	5,300	
mg/Kg OC	, , , , , , , , , , , , , , , , , , , ,		10.1		700		
1,2-Dichlorobenzene	0.5	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3	
1,4-Dichlorobenzene	0.5	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9	
1,2,4-Trichlorobenzene	0.5	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8	
Hexachlorobenzene	0.5	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3	
Diethyl Phthalate	0.9	<mdl< td=""><td>1</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	1	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110	
Dimethyl Phthalate	0.2	<mdl< td=""><td>0.4</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.4	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53	
Di-N-Butyl Phthalate	0.9	<mdl,b< td=""><td>1</td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<>	1	<mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<>	220	1,700	
Benzyl Butyl Phthalate	0.5	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64	
Bis(2-Ethylhexyl)Phthalate	70		0.7	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78	
Di-N-Octyl Phthalate	0.5	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500	
Dibenzofuran	0.9	<mdl< td=""><td>1</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></mdl<>	1	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58	
Hexachlorobutadiene	0.9	<mdl< td=""><td></td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>		<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2	
N-Nitrosodiphenylamine	0.9	<mdl,b< td=""><td>1</td><td><mdl,b< td=""><td>11</td><td>11</td></mdl,b<></td></mdl,b<>	1	<mdl,b< td=""><td>11</td><td>11</td></mdl,b<>	11	11	
Total PCBs	26.8		1	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65	
Dry weight μg/Kg		· · · · · · · · · · · · · · · · · · ·			··-		
Phenol	100	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200	
2-Methylphenol	40	<mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	20	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63	
1-Methylphenol	40	<mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	20	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670	
2,4-Dimethylphenol	40	<mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	20	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29	
Pentachlorophenol	40	<mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	20	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690	
Benzyl Alcohol	40	<mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	20	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73	
Benzoic Acid	100	<mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	60	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650	
Metals mg/kg dry weight					·		
Mercury	0.55		0.02	<mdl< td=""><td>0.41</td><td>0.59</td></mdl<>	0.41	0.59	
Arsenic	14		7.2		57	93	
admium	1.3	L	0.12	Ĺ	5.1	6.7	
hromium	55		12		260	270	
Copper	57	В	11	В	390	390	
.ead	92	E,B	8.1	E,B	450	530	
Silver	4.7		0.36		6.1	6.1	
Zinc	240	В	46	В	410	960	

TABLE 4-14 (continued).	Core Replicates:	1992 Comparison to
Sediment Standards,	Below Cap and So	ections O1 and O2

Sediment Standards, below Cap and Sections O1 and O2								
Section/Locator	O Below Ca	p LTBC35	01 L	TBC35		TBC35		
Date Sampled	May 19, 92		May 1		May 1		-	Sediment
Sample Number	9201194		9201195		9201		Standards	
% Solids	75		84			85		
% TOC	3.6		1.	_	3.0		SQS	CSL
Parameters	Value	Qual	Value	Qual	Value	Qual	Table I	Table III
LPAHs mg/Kg OC								
Naphthalene	1	_ <mdl< td=""><td>3</td><td><mdl< td=""><td>5</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<></td></mdl<>	3	<mdl< td=""><td>5</td><td><mdl< td=""><td>99</td><td>170</td></mdl<></td></mdl<>	5	<mdl< td=""><td>99</td><td>170</td></mdl<>	99	170
Acenaphthene	0.69		0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>16</td><td>57</td></mdl<></td></mdl<>	1	<mdl< td=""><td>16</td><td>57</td></mdl<>	16	57
Acenaphthylene	1.1		4.7		1	<mdl< td=""><td>66</td><td>66</td></mdl<>	66	66
Phenanthrene	11		42		1	<mdl< td=""><td>100</td><td>480</td></mdl<>	100	480
Fluorene	1.3		3.7		1	<mdl< td=""><td>23</td><td>79</td></mdl<>	23	79
Anthracene	5.3		8.5		1	<mdl< td=""><td>220</td><td>1,200</td></mdl<>	220	1,200
2-Methylnaphthalene	1	<mdl< td=""><td>3</td><td><mdl< td=""><td>5</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<></td></mdl<>	3	<mdl< td=""><td>5</td><td><mdl< td=""><td>38</td><td>64</td></mdl<></td></mdl<>	5	<mdl< td=""><td>38</td><td>64</td></mdl<>	38	64
Total LPAHs	21.39		65.7		15		370	780
HPAHs mg/Kg OC								
Fluoranthene	0.3	<mdl< td=""><td>37</td><td></td><td>1</td><td><mdl< td=""><td>160</td><td>1,200</td></mdl<></td></mdl<>	37		1	<mdl< td=""><td>160</td><td>1,200</td></mdl<>	160	1,200
Pyrene	16		44		1	<mdl< td=""><td>1,000</td><td>1,400</td></mdl<>	1,000	1,400
Benzo(a)anthracene	9.7		13		1	<mdl< td=""><td>110</td><td>270</td></mdl<>	110	270
Chrysene	13		15		1	<mdl< td=""><td>110</td><td>460</td></mdl<>	110	460
Total benzofluoranthenes	29.9		20.7		10		230	450
Benzo(a)pyrene	11		11		2	<mdl< td=""><td>99</td><td>210</td></mdl<>	99	210
Indeno(1,2,3-Cd)Pyrene	4.7		7.5		2	<mdl< td=""><td>34</td><td>88</td></mdl<>	34	88
Dibenzo(a,h)anthracene	1	<rdl< td=""><td>3</td><td><mdl< td=""><td>5</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<></td></rdl<>	3	<mdl< td=""><td>5</td><td><mdl< td=""><td>12</td><td>33</td></mdl<></td></mdl<>	5	<mdl< td=""><td>12</td><td>33</td></mdl<>	12	33
Benzo(g,h,i)perylene	5.3		10		2	<mdl< td=""><td>31</td><td>78</td></mdl<>	31	78
Total HPAHs	90.9		161.2		25		960	5,300
mg/Kg OC								-
1,2-Dichlorobenzene	0.3	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>1 1</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>1 1</td><td><mdl< td=""><td>2.3</td><td>2.3</td></mdl<></td></mdl<>	1 1	<mdl< td=""><td>2.3</td><td>2.3</td></mdl<>	2.3	2.3
1,4-Dichlorobenzene	0.3	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>3.1</td><td>9</td></mdl<></td></mdl<>	1	<mdl< td=""><td>3.1</td><td>9</td></mdl<>	3.1	9
1,2,4-Trichlorobenzene	0.3	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.81</td><td>1.8</td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.81</td><td>1.8</td></mdl<>	0.81	1.8
Hexachlorobenzene	0.3	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>0.38</td><td>2.3</td></mdl<></td></mdl<>	1	<mdl< td=""><td>0.38</td><td>2.3</td></mdl<>	0.38	2.3
Diethyl Phthalate	0.8	<mdl< td=""><td>2</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>2</td><td><mdl< td=""><td>61</td><td>110</td></mdl<></td></mdl<>	2	<mdl< td=""><td>61</td><td>110</td></mdl<>	61	110
Dimethyl Phthalate	0.2	<mdl< td=""><td>0.5</td><td><mdl< td=""><td>0.7</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<></td></mdl<>	0.5	<mdl< td=""><td>0.7</td><td><mdl< td=""><td>53</td><td>53</td></mdl<></td></mdl<>	0.7	<mdl< td=""><td>53</td><td>53</td></mdl<>	53	53
Di-N-Butyl Phthalate	0.8	<mdl,b< td=""><td>2</td><td><mdl,b< td=""><td>2</td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<></td></mdl,b<>	2	<mdl,b< td=""><td>2</td><td><mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<></td></mdl,b<>	2	<mdl,b< td=""><td>220</td><td>1,700</td></mdl,b<>	220	1,700
Benzyl Butyl Phthalate	3.1		0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>4.9</td><td>64</td></mdl<></td></mdl<>	1	<mdl< td=""><td>4.9</td><td>64</td></mdl<>	4.9	64
Bis(2-Ethylhexyl)Phthalate	42		0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>47</td><td>78</td></mdl<></td></mdl<>	1	<mdl< td=""><td>47</td><td>78</td></mdl<>	47	78
Di-N-Octyl Phthalate	0.3	<mdl< td=""><td>0.8</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<></td></mdl<>	0.8	<mdl< td=""><td>1</td><td><mdl< td=""><td>58</td><td>4,500</td></mdl<></td></mdl<>	1	<mdl< td=""><td>58</td><td>4,500</td></mdl<>	58	4,500
Dibenzofuran	0.8	<mdl< td=""><td>2</td><td><rdl< td=""><td>2</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></rdl<></td></mdl<>	2	<rdl< td=""><td>2</td><td><mdl< td=""><td>15</td><td>58</td></mdl<></td></rdl<>	2	<mdl< td=""><td>15</td><td>58</td></mdl<>	15	58
Hexachlorobutadiene	0.8	<mdl< td=""><td>2</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>2</td><td><mdl< td=""><td>3.9</td><td>6.2</td></mdl<></td></mdl<>	2	<mdl< td=""><td>3.9</td><td>6.2</td></mdl<>	3.9	6.2
N-Nitrosodiphenylamine	0.8	<mdl< td=""><td>2</td><td><mdl< td=""><td>2</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>2</td><td><mdl< td=""><td>11</td><td>11</td></mdl<></td></mdl<>	2	<mdl< td=""><td>11</td><td>11</td></mdl<>	11	11
Total PCBs	9.7		2	<mdl< td=""><td>2</td><td><mdl< td=""><td>12</td><td>65</td></mdl<></td></mdl<>	2	<mdl< td=""><td>12</td><td>65</td></mdl<>	12	65
Dry weight μg/Kg								
Phenol	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<></td></mdl<>	60	<mdl< td=""><td>60</td><td><mdl< td=""><td>420</td><td>1,200</td></mdl<></td></mdl<>	60	<mdl< td=""><td>420</td><td>1,200</td></mdl<>	420	1,200
2-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>63</td><td>63</td></mdl<></td></mdl<>	20	<mdl< td=""><td>63</td><td>63</td></mdl<>	63	63
4-Methylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>670</td><td>670</td></mdl<></td></mdl<>	20	<mdl< td=""><td>670</td><td>670</td></mdl<>	670	670
2,4-Dimethylphenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>29</td><td>29</td></mdl<></td></mdl<>	20	<mdl< td=""><td>29</td><td>29</td></mdl<>	29	29
Pentachlorophenol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>360</td><td>690</td></mdl<></td></mdl<>	20	<mdl< td=""><td>360</td><td>690</td></mdl<>	360	690
Benzyl Alcohol	30	<mdl< td=""><td>20</td><td><mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>20</td><td><mdl< td=""><td>57</td><td>73</td></mdl<></td></mdl<>	20	<mdl< td=""><td>57</td><td>73</td></mdl<>	57	73
Benzoic Acid	70	<mdl< td=""><td>60</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<></td></mdl<>	60	<mdl< td=""><td>60</td><td><mdl< td=""><td>650</td><td>650</td></mdl<></td></mdl<>	60	<mdl< td=""><td>650</td><td>650</td></mdl<>	650	650
Metals mg/kg dry weight								
Mercury	0.33		0.024		0.02	<mdl< td=""><td>0.41</td><td>0.59</td></mdl<>	0.41	0.59
Arsenic	12		7.1		7.1		57	93
Cadmium	1.1	L	0.12	L	0.1	<mdl,l< td=""><td>5.1</td><td>6.7</td></mdl,l<>	5.1	6.7
Chromium	37		14		13		260	270
Copper	79	В	12	В	11	В	390	390
Lead	120	E,B	8.6	E,B	3.5	E,B	450	530
Silver	5.1		0.36		0.24		6.1	6.1
Zinc	120	В	45	В	46	В	410	960
	Exceed:	: SQS	Exceed	s CSL				